

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Distinct photocatalytic charges separation pathway on CuO_x modified rutile and anatase TiO₂ under visible light

Min Chen^a, Jianhua Chen^{b,c}, Chuncheng Chen^{b,c,*}, Changbin Zhang^{a,c,*}, Hong He^{a,c}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085. PR China

^b Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing

100190, PR China

^c University of Chinese Academy of Sciences, Beijing 100049, PR China

ARTICLE INFO

Keywords: Anatase Rutile Cu Charge migration

ABSTRACT

Modification of TiO₂ with copper oxides clusters (CuO_x-TiO₂) induces visible-light absorption and enhances its activity. In this work, we investigated the CuO_x-anatase and CuO_x-rutile for the photocatalytic oxidation of gaseous NH₃ under visible light. In contrast with the widely reported results that CuO_x-anatase displays higher performance than CuO_x-rutile in photocatalytic oxidation or reduction, we surprisingly observed that CuO_x-rutile is able to oxidize NH₃ efficiently under visible light irradiation, while CuO_x-anatase shows no activity. Further characterizations showed that visible-light inclines to drive the VB electrons of rutile TiO₂ to CuO_x at the interface between rutile TiO₂ and CuO_x, while it drives the electrons of CuO_x to anatase TiO₂ at interface between anatase TiO₂ and CuO_x. DFT calculations revealed that the interaction between CuO_x and TiO₂ is markedly different in CuO_x-ratase and CuO_x-rutile, which induces the differences in the electronic distribution of interfacial Cu, O and Ti atoms, resulting in the distinct direction of charge transfer.

1. Introduction

TiO₂ is well-known as an efficient photocatalyst, and TiO₂ with different crystalline forms (anatase and rutile) is widely employed to various photocatalytic reactions [1–4]. Owing to the wide band gap, TiO₂ can be only activated under ultraviolet (UV) light irradiation, which limits its practical applications. Nano-copper oxide clusters (CuO_x) grafting is recently shown to be a promising way to expand the visible-light photocatalytic activity of rutile and anatase TiO₂ [5–9]. The CuO_x-TiO₂ has been investigated in many photocatalytic oxidation or reduction, such as degradation of organic pollutants, H₂ evolution, CO₂ reduction, etc. [5–10]. Anatase TiO₂ usually has the higher photocatalytic activity under illumination of UV light compared with rutile TiO₂ due to the wider bandgap and higher surface area [11,12]. Similarly, CuO_x-anatase has also demonstrated the higher activity under UV and visible light compared with CuO_x-rutile [6,10].

On the surface of CuO_x -TiO₂, the photocatalytic reactions are driven by visible-light induced interfacial charge transfer (IFCT) process between CuO_x and TiO₂ [13–15]. Since TiO₂ itself cannot be directly excited by visible light, the electron is usually considered to be excited from the valence band (VB) to conduction band (CB) of CuO_x , and next transfers to the CB of TiO_2 , leading to the charge separation [16,17]. Similar scheme was also reported in TiO_2 -based heterojunctions, such as CdS- TiO_2 , g- C_3N_4 - TiO_2 , and plasmonic metal- TiO_2 [18,19]. In contrast, several reports have shown that the direct excitation from the VB of TiO_2 to the metal species might occur under visible-light irradiation in the metal-grafted TiO_2 [8,13,17]. Hashimoto et al. reveal that the electrons in the valence band (VB) of rutile phase TiO_2 are excited and migrate to MO_x (for example, CuO_x and FeO_x) through the interface between TiO_2 and MO_x [13]. It is further supported by detecting reaction intermediates, such as trapped holes, trapped electrons, $\cdot O_2^-$, and H_2O_2 [16]. Thus, the direction of the charge migration between CuO_x and TiO_2 is relatively complicated and a further investigation is greatly needed.

In above-mentioned two cases, the generated hole is left in the VB of CuO_x or TiO_2 , and the disagreement about the direction of the charge migration on MO_x - TiO_2 should be mainly due to the discrepancy in understanding the origin of the holes. Hence, confirming the location of hole will contribute to the better understanding of charge separation mechanism in CuO_x - TiO_2 . Researches usually use decomposition of

https://doi.org/10.1016/j.apcatb.2021.120735

Received 9 July 2021; Received in revised form 3 September 2021; Accepted 16 September 2021 Available online 20 September 2021 0926-3373/© 2021 Elsevier B.V. All rights reserved.

^{*} Corresponding authors at: University of Chinese Academy of Sciences, Beijing 100049, PR China. *E-mail addresses:* ccchen@iccas.ac.cn (C. Chen), cbzhang@rcees.ac.cn (C. Zhang).

Fig. 1. Photocatalytic oxidation of NH₃ under UV (a) and visible light (b) over different samples. (100 ppm NH₃, 20 vol% O₂, RH 50% and N₂ balance).

model organic pollutants to judge the efficiency of MO_x -TiO₂ [20]. The reported CuO_x -TiO₂ or FeO_x -TiO₂ shows excellent activities for oxidation of acetone and degradation of 2-naphthol or other dyes [16,21]. Since the active species such as holes, electrons, $\cdot O_2^-$, and $\cdot OH$ are all involved in these reactions, the specific role and source of the hole cannot be determined. Therefore, it is reasonable to propose that a typical oxidation reaction, which is very sensitive to the VB position of a photocatalyst, might be more suitable for effectively investigating the direction of charge migration on MO_x -TiO₂.

Recently, we demonstrated that TiO₂-based hole is the key active species for the oxidation of NH3 on TiO2-based photocatalysts, and therefore NH3 activation can be a good indicator for the presence of TiO_2 -based hole [22–24]. In this study, we prepared the CuO_x-grafted rutile and anatase TiO₂ catalysts, and carefully investigated the impact of TiO₂ crystalline structures on the charge migration mechanism of CuO_v-TiO₂ by using a hole position sensitive NH₃ oxidation probe reaction, combining with EPR experiments and DFT calculations. We found that the charge migration pathway of CuO_x-TiO₂ is closely dependent on the crystalline structures of TiO₂, in which at the interface between rutile TiO₂ and CuO_x, visible light drives the VB electrons of rutile TiO₂ to CuO_x, while in case of the interface between anatase TiO₂ and CuO_x, visible light is incline to drive the excitation of CuO_x, and the photoexcited electrons transfer to anatase TiO2. Our findings about the IFCT process between CuOx-TiO2 will be very helpful for the deep understanding of the mechanism of charge migration in MO_x-TiO₂.

2. Experiment

2.1. Synthesis of catalysts

 $\rm TiO_2$ with different crystalline (anatase and rutile) was purchased from Aladdin. 1.0 g anatase or rutile $\rm TiO_2$ nanoparticles were dispersed into the CuSO_4 aqueous solution. The amount of Cu²⁺ relative to the amount of TiO_2 sample was 0.3 wt%. The dispersing solution under stirring was placed into a water-bath kept at 70 °C for 1 h. The obtained precipitates were washed with deionized water several times and then were dried in an oven at 70 °C for 24 h.

2.2. Activity tests

The activity tests for NH_3 oxidation were performed at room temperature in a flow reactor. 0.1 g of photocatalyst powders in a round dish was placed in the center of the reactor. The light source was a 500 W commercial Xe lamp (Beijing TrusTech Science and Technology Co., China). The concentrations of NH₃, NO_x (NO, NO₂) and N₂O were simultaneously measured by an online FTIR (Nicolet IS50) equipped with 2 m gas cell and a DTGS detector, and N₂ selectivity was calculated according to the N element balance by the following equations: N₂ selectivity = ([NH₃]_{in} – [NO_x]_{out} – 2[N₂O]_{out}) / [NH₃]_{in}. The reactant gas was 100 ppm NH₃, 20 vol% O₂, RH 50% and N₂ balance. The volume of reactant gas was about 1.5 L.

2.3. Characterization methods

Powder X-ray diffraction (XRD) measurements were performed on a X'Pert PRO MPD X-ray powder diffractometer (Japan) over the 2θ range from 10° to 90° with a scan step size of 0.02° . Transmission electron microscopy (TEM) images of the samples were taken on a JEOL 2100F instrument operating at an accelerating voltage of 200 kV. The UV–vis diffuse reflection spectra (DRS) were tested with UV–vis spectrophotometer (U-3310, Hitachi) using Al₂O₃ as a reference. The X-band electron paramagnetic resonance (EPR) spectra were measured at 90 K using a Bruker E500 EPR spectrometer. The photoelectrochemical measurements were conducted on CHI 630B workstation and a saturated Ag/AgCl electrode and a platinum plate were used as the reference electrode and the counter electrode, respectively.

2.4. Computational methods

The calculations about interaction of CuO_x with the (101) surfaces of anatase or (110) surface of rutile TiO₂ was performed with code VASP. The Perdew-Burke-Ernzerhof (PBE) GGA exchange-correlation functional was applied. A periodic slab with 2×2 surface unit cells for (101) surface of anatase TiO₂ and (101) surface of rutile TiO₂ was used. The models contain 108 atoms for (101) facets of anatase TiO₂ and 108 atoms for (101) facets of anatase TiO₂ and 0 were fixed in the process of structure optimization. The vacuum gap thickness was 15 Å. Gamma centered k-point meshes of $2 \times 2 \times 1$ were employed. Structures were relaxed until the forces acting on each atom were smaller than 0.02 eV/Å.

3. Results and discussion

3.1. Activity tests for photocatalytic oxidation of NH₃

The photocatalytic activity for oxidation of NH_3 was firstly tested. As shown in Fig. 1, under UV irradiation, both CuO_x -anatase and CuO_x -rutile show much higher activity compared with pure anatase and rutile

Fig. 2. X-ray diffraction pattern of CuO_x-rutile and CuO_x-anatase.

TiO₂. The CuO_x-anatase is more active than CuO_x-rutile under UV light irradiation (Fig. 1a), and the NH₃ conversion over CuO_x-anatase can reach above 95% in 20 min, while only 60% over CuOx-rutile. Notably, in the case of visible light irradiation, we surprisingly observed a completely different activity order between CuOx-rutile and CuOxanatase, relative to that of under UV irradiation. The CuOx-rutile exhibits excellent performance towards NH₃ oxidation, while no any NH₃ conversion is observed at all on CuO_x-anatase (Fig. 1b). We have measured the produced NO_x and N₂O during the reaction over CuO_xrutile under visible light and the results are presented in Fig. S1. It is shown that no NO and NO2 was detected and about 12 ppm N2O is produced, and hence the selectivity of NH3 to N2 was calculated to be about 76%. The influences of Cu precursor, Cu loading amount and calcination temperature on the activities of CuOx-rutile were also investigated (Figs. S2-S4). It is shown that the optimal loading of Cu is 0.3 wt%, and the counterions of the Cu precursors such as chlorine, nitrate and sulfate have no clear impacts on the activity. The drastic different performances between CuOx-rutile and CuOx-anatase strongly indicates that there is a distinct mechanism of charge migration on CuOx-rutile and CuOx-anatase under visible light irradiation.

3.2. Structural characterizations

The structure of CuOx-rutile and CuOx-anatase were next investigated. X-ray diffraction (XRD) analysis shows that CuOx-anatase and CuOx-rutile contain the typical anatase and rutile crystalline phases, respectively (Fig. 2). The TEM images display that the CuO_x clusters are uniformly distributed on rutile or anatase TiO₂, and the sizes of the CuO_x clusters in both samples are approximately 1–2 nm (Fig. 3). XPS analysis was employed to further detect the chemical states of the surface CuO_x. As shown in Fig. S5, both CuOx-anatase and CuOx-rutile exhibit two peaks of Cu $2p_{1/2}$ (952.9 eV) and Cu $2p_{3/2}$ (933.1 eV), which are assigned to Cu^{2+} [5,25]. We further conducted an EPR experiment to explore the chemical state of CuO_x. The EPR signal with the g factor of 2.394 is dominant on CuO_x-anatase and CuO_x-rutile (Fig. S6), and this signal is ascribed to Cu^{2+} species. Thus, the formed amorphous CuO_x mainly exhibits the state of Cu (II), which is well consistent with the results previously reported [26,27]. Furthermore, the Cu 2p XPS spectra of the CuO_x-rutile and CuO_x-anatase after reaction were also measured. As shown in Figs. S7 and S8, the CuO_x species remained in Cu^{2+} state on the tested samples, indicating that the chemical properties of CuO_x do not change after reaction.

3.3. Photo-electrochemical measurement

The UV-vis diffuse reflectance spectra (DRS) of the rutile TiO₂, CuO_xrutile, anatase TiO2 and CuOx-anatase samples were measured and compared, and the spectra are displayed in Fig. S9. The pristine rutile and anatase TiO₂ show no obvious visible light absorption. After the CuO_x species are grafted, the absorption intensities of both CuO_x-rutile and CuO_x-anatase are increased in the visible light range, indicating that CuO_x clusters on rutile or anatase TiO₂ introduce visible light absorption. To show the origin of the visible light absorption, we further compared the UV-vis diffuse reflectance spectra of CuOx-rutile and CuO_x -anatase with rutile and anatase TiO_2 as background, respectively. As shown in Fig. 4, CuOx-rutile has strong absorption in 420-500 nm with a maximum at around 475 nm and 700-800 nm in visible light region, however, the dominant absorption of CuOx-anatase in visible light region is in the range of 700-800 nm. Evidently, the absorption in 700-800 nm on CuOx-rutile and CuOx-anatase stems from the d-d excitation of CuO_x [28]. The absorption of 420–500 nm on CuO_x -rutile should not originate from the individual excitation of TiO2 or CuOx, and it may be caused by direct charge transfer from valance band of rutile TiO₂ to CuO_x nanoparticle (see below for more discussion). Other optical properties such as photocurrent and EIS were also measured. Consistent

Fig. 3. The TEM image of CuO_x-rutile (a) and CuO_x-anatase (b).

Fig. 4. UV–vis diffuse reflectance spectra of CuO_x -rutile and CuO_x -anatase with rutile and anatase as background, respectively.

with the results about activity tests, the CuO_x -rutile possesses higher photocurrents and the lower electrochemical impedances, compared with CuO_x -anatase under visible light irradiation (Figs. S10 and S11). In contrast, CuO_x -rutile possesses lower photocurrents and the higher electrochemical impedances compared with CuO_x -anatase under UV irradiation (Figs. S12 and S13). These findings further suggest that CuO_x -rutile and CuO_x -anatase may have completely different photoexcitation pathway under visible light.

3.4. Mechanism discussion of charge migration on CuO_x -Ti O_2

As reported, the decomposition of model organic pollutants is frequently used to judge the efficiency of CuO_x -TiO₂, for instance, the CuO_x -TiO₂ or FeO_x-TiO₂ shows excellent activities for oxidation of acetone and degradation of 2-naphthol or other dyes [13,29–34]. Since the active species such as holes, electrons, \cdotO_2^- , and \cdotOH are all involved in these reactions, the specific role and source of the hole cannot be determined. Previous studies and our recent reports have confirmed that NH₃ oxidation is a hole-position sensitive reaction, and the activation of NH₃ by hole into NH₂ radical is the activity-determining step [22–24], which means that an active visible-light photocatalyst for NH_3 oxidation should have a low valence band (VB) edge with high oxidation potential. For instance, semiconductor with low VB position, such as TiO₂, Ag_3PO_4 , and WO₃, is able to oxidize NH_3 when they are photoexcited under suitable irradiation [23]. The distinct performances in NH_3 oxidation between CuO_x -rutile and CuO_x -anatase suggest that visible light might excites electrons from VB of rutile to the CuO_x , then holes in VB of rutile TiO₂ are capable of oxidizing NH_3 . By contrast, visible light might only excite electrons from VB of CuO_x to CB of CuO_x on anatase TiO₂, then holes in VB of CuO_x cannot oxidize NH_3 .

EPR is a powerful tool to detect the photo-excited holes and electrons of TiO₂ and to investigate the chemical changes of CuO_x species under UV or visible light irradiation [7,16,28]. Fig. 5 show that the EPR signals of Cu^{2+} in CuO_x -rutile and CuO_x -anatase became broader in the dark, probably due to the inhomogeneity of the chemical structure surrounding Cu²⁺ ions. Upon visible light irradiation, the Cu²⁺ signal decrease in the case of the CuO_x -rutile, and a small signal at g = 2.010ascribed to trapped holes in the VB of TiO₂ is observed. The similar signal is also observed under UV irradiation. However, the Cu²⁺ signal in CuO_v-anatase has no changes upon visible light irradiation, and no signal of trapped holes is observed. When the visible light was switched to UV irradiation, the Cu²⁺ signal on anatase decrease and the signals of trapped holes appear. The decrease of Cu²⁺ signal is associated with the appearance of trapped holes, corresponding to the excited electrons from the VB of TiO₂ to the surface of CuO_x. Hence, we confirm that on the interface of CuOx and rutile TiO2, electrons are excited from VB of rutile TiO₂ to the CuO_x under visible light, while in case of the surface of CuO_x and anatase TiO₂, the VB electrons of anatase TiO₂ are not excited under visible light irradiation.

The different photocatalytic charge separation process in semiconductors would induce the formation of distinct reactive species, such as hydroxyl radical (·OH) and superoxide radical (·O₂⁻), etc. [35,36]. We next measured the related active species on CuO_x-rutile and CuO_x-anatase under visible light. Fig. 6a show that 4 strong characteristic peaks of the DMPO-·OH adducts appear in CuO_x-rutile under visible light, while the DMPO-·OH adducts signal of Cu-anatase is very weak under same conditions, indicating that the large amount of ·OH species are formed on CuO_x-rutile, but it is extremely low on CuO_x-anatase. The ·O₂⁻ species are typical radicals through activating O₂ molecules by the photoexcited electrons [37,38], and the DMPO-·O₂⁻ species in acetonitrile dispersions were also measured under visible light irradiation (Fig. 6b). Both CuO_x-rutile and CuO_x-anatase has strong DMPO-·O₂⁻ species signal, indicating electrons from CB of CuO_x or CB of anatase

Fig. 5. EPR spectra of CuO_x-rutile (a) and CuO_x-anatase (b) measured at 77 K under vacuum with visible light or UV irradiation.

Fig. 6. DMPO spin-trapping EPR spectra measured at 303 K after 5 min visible irradiation in aqueous solutions (a) and acetonitrile (b) over different samples.

Fig. 7. The optimization structures of CuO-anatase-101 and CuO-rutile-110 (a, b) and Bader charge before and after CuO adsorbed on anatase and rutile (c).

 TiO_2 all can efficiently activate O_2 . The results of DMPO-·OH adducts and DMPO-·O₂⁻ adducts further reveal that the sources of excited hole are different on the CuO_x -rutile and CuO_x -anatase under visible light. The holes on CuO_x -rutile are from the low VB of TiO_2 , and it is capable of producing the ·OH radicals. In contrast, the holes on CuO_x -anatase are from the VB of CuO_x , and it can not oxidize the H₂O to ·OH radicals.

DFT calculations were next carried out to further explore why charge separation process greatly depend on the crystalline structure of the TiO₂. Fig. 7 presents the optimization structures of CuO-anatase-101 and CuO-rutile-110. It is shown that Cu atom in CuO is bonded with the surface bridge oxygen (O2) of TiO₂, and O1 in CuO is bonded with Ti1 in both CuO-anatase-101 and CuO-rutile-110 interfaces. The interfacial Cu—O2 and Ti1—O1 bonds between CuO and anatase-101 surface have a distance of 2.02 Å and 1.79 Å, while Cu—O2 and Ti—O1 bond between CuO and rutile-110 surface have a distance of 1.83 Å and 1.75 Å. The adsorption energy between CuO_x and different crystalline TiO₂ was then calculated. The adsorption energy is -3.14 eV and -3.43 eV for CuO adsorption on anatase and rutile TiO₂, respectively (Fig. 4a), indicating that the interaction between CuO_x and rutile TiO₂ is stronger

than that of CuO_x and anatase TiO_2 . The Bader charge was further analyzed, and the results are shown in Fig. 4c. When CuO is adsorbed on anatase-101 surface, the Bader charge of interfacial Ti1 is reduced from 9.86 to 9.79, while the Bader charge of the surface bridge oxygen shows no significant change, indicating that the interaction between CuO and anatase is mainly related to the interaction of interfacial Ti and the oxygen in CuO_x. Hence, the interfacial charge transfer between CuO and anatase TiO₂ should occur in the interfacial Ti and the oxygen in CuO_x, specifically, visible light inclines to drive the electrons of interfacial O in CuO_x to the interfacial Ti in anatase-101. Interestingly, in case of CuOrutile-110, the Bader charge of interfacial Ti has no significant change after CuO adsorb on rutile-110, while the Bader charge of the surface bridge oxygen is increased from 6.98 to 7.08, indicating that the interaction between CuO and rutile TiO2 mainly stems from the interaction of surface bridge oxygen and interfacial Cu in CuOx. Therefore, the charge transfer in CuO-rutile-110 takes place in a opposite mode compared with that of CuO-anatase-101, that the visible light inclines to drive the electrons of surface bridge O in rutile-110 to the interfacial Cu in CuO_x.

The strong interaction between noble metal and metal oxide, such as

Scheme 1. Charge separation processes in CuOx-rutile and CuOx-anatase.

Au, Pt and Pd supported on TiO₂, FeO_x and CeO₂, etc. [39–42], has been widely investigated in the field of catalysis, and it is shown to greatly influence the catalytic activity and selectivity. Additionally, the interface of metal and oxide has been also identified as active site in catalytic oxidation or reduction reactions [43–45]. Our present results show that the interaction between MO_x and TiO₂ is also the key factor determining the direction of charge transfer in CuO_x-TiO₂. Since the interactions between CuO_x and TiO₂ in CuO_x-anatase and CuO_x-rutile are much different from each other, the electronic distributions of interfacial Cu, O and Ti atoms are markedly different, and then inducing the distinct direction of charge transfer.

4. Conclusions

In summary, by using a hole-position sensitive NH₃ oxidation as probe reaction, we found a usual photocatalytic phenomenon that CuOxanatase shows better activity than the CuOx-rutile under UV, and an unusual phenomenon that CuOx-rutile shows activity, while no activity was observed on CuO_x-anatase under visible light. In combination with EPR and DFT calculations, we discovered that the crystalline forms of TiO₂ remarkably influence the charge separation of CuO_x-TiO₂ due to the different interactions between CuO_x and TiO₂ in CuO_x-anatase and CuO_x-rutile, resulting in the distinct direction of charge transfer. The detailed processes of charge separation are presented in Scheme 1. On the interface of CuO_x and rutile TiO₂, the electrons of rutile TiO₂ are transferred from VB directly to the CuO_x under visible light irradiation. Due to the low VB postion of TiO₂, the left holes have high oxidition potential and therefore could efficiently oxidize NH3. On the interface of CuO_x and anatase TiO₂, visible light irradiation can only drive the excitation of CuO_x itself. The left holes of CuO_x have low oxidition potential and therefore cannot oxidize NH3 due to the high VB postion of CuOx. This work provides a facile probe oxidation reaction to intensively study the mechanism of charge migration in CuO_x-TiO₂ and the findings will contribute to a deeper understanding of the basic photocatalytic process.

CRediT authorship contribution statement

Min Chen: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Visualization, Writing – original draft, Writing – review & editing. Jianhua Chen: Investigation, Resources, Data curation. Chuncheng Chen: Formal analysis, Investigation, Writing – original draft. Changbin Zhang: Writing – original draft, Writing – review & editing, Supervision, Project administration, Funding acquisition. Hong He: Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFC0211802) and the National Natural Science Foundation of China (21906174, 22025604, 21976196).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2021.120735.

References

- A. Fujishima, X.T. Zhang, D.A. Tryk, TiO₂ photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.
- [2] H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, J. Ye, Recent advances in TiO₂-based photocatalysis, J. Mater. Chem. A 2 (2014) 12642–12661.
- [3] R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev. 114 (2014) 9824–9852.
- [4] J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO₂ reduction performance of TiO₂: a review, Appl. Surf. Sci. 392 (2017) 658–686.
- [5] S. Zhu, X.F. Chen, Z.C. Li, X.Y. Ye, Y. Liu, Y. Chen, L. Yang, M. Chen, D.Q. Zhang, G. S. Li, H.X. Li, Cooperation between inside and outside of TiO₂: lattice Cu⁺ accelerates carrier migration to the surface of metal copper for photocatalytic CO₂ reduction, Appl. Catal. B: Environ. 264 (2020), 118515.
- [6] D.W. Ni, H.Y. Shen, H.Q. Li, Y. Ma, T.Y. Zhai, Synthesis of high efficient Cu/TiO₂ photocatalysts by grinding and their size-dependent photocatalytic hydrogen production, Appl. Surf. Sci. 409 (2017) 241–249.
- [7] N. Seriani, C. Pinilla, Y. Crespo, Presence of gap states at Cu/TiO₂ anatase surfaces: consequences for the photocatalytic activity, J. Phys. Chem. C 119 (2015) 6696–6702.
- **[8]** K. Osako, K. Matsuzaki, T. Susaki, S. Ueda, G. Yin, A. Yamaguchi, H. Hosono, M. Miyauchi, Direct observation of interfacial charge transfer between rutile TiO_2 and ultrathin CuO_x Film by visible-light illumination and its application for efficient photocatalysis, Chemcatchem 10 (2018) 3666–3670.
- [9] A. Šuligoj, I. Arčon, M. Mazaj, G. Dražić, D. Arčon, P. Cool, U.L. Štangar, N. N. Tušar, Surface modified titanium dioxide using transition metals: nickel as a winning transition metal for solar light photocatalysis, J. Mater. Chem. A 6 (2018) 9882–9892.
- [10] P. Unwiset, A. Makdee, K.C. Chanapattharapol, P. Kidkhunthod, Effect of Cu addition on TiO₂ surface properties and photocatalytic performance: X-ray absorption spectroscopy analysis, J. Phys. Chem. Solids 120 (2018) 231–240.
- [11] Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya, N. Tsunoji, K. Komaguchi, T. Sano, Y. Bando, D. Golberg, Y. Sugahara, Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO₂ nanoparticles by hydrothermal treatment, Angew. Chem. Int. Ed. 55 (2016) 3600–3605.
- [12] G. Xiang, Y.G. Wang, D. Wu, T. Li, J. He, J. Li, X. Wang, Size-dependent surface activity of rutile and anatase TiO₂ nanocrystals: facile surface modification and enhanced photocatalytic performance, Chemistry 18 (2012) 4759–4765.
- [13] H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D.A. Tryk, T. Yokoyama, K. Hashimoto, Visible light-sensitive Cu (II)-grafted TiO₂ photocatalysts: activities and X-ray absorption fine structure analyses, J. Phys. Chem. C 113 (2009) 10761–10766.
- [14] D. Wang, X.Y. Pan, G.T. Wang, Z.G. Yi, Improved propane photooxidation activities upon nano Cu₂O/TiO₂ heterojunction semiconductors at room temperature, RSC Adv. 5 (2015) 22038–22043.
- [15] M.V. Dozzi, G.L. Chiarello, M. Pedroni, S. Livraghi, E. Giamello, E. Selli, High photocatalytic hydrogen production on Cu (II) pre-grafted Pt/TiO₂, Appl. Catal. B 209 (2017) 417–428.
- [16] Y. Nosaka, S. Takahashi, H. Sakamoto, A.Y. Nosaka, Reaction mechanism of Cu (II)-grafted visible-light responsive TiO₂ and WO₃ photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry, J. Phys. Chem. C 115 (2011) 21283–21290.
- [17] Q. Jin, M. Fujishima, A. Iwaszuk, M. Nolan, H. Tada, Loading effect in copper (II) oxide cluster-surface-modified titanium (IV) oxide on visible- and UV-light activities. J. Phys. Chem. C 117 (2013) 23848–23857.
- [18] D. Zhang, Y.L. Guo, Z.K. Zhao, Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation, Appl. Catal. B 226 (2018) 1–9.
- [19] J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Zscheme g-C₃N₄-TiO₂ photocatalysts for the decomposition of formaldehyde in air, Phys. Chem. Chem. Phys. 15 (2013) 16883–16890.

M. Chen et al.

- [20] C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev. 39 (2010) 4206–4219.
- [21] M. Liu, X. Qiu, M. Miyauchi, K. Hashimoto, Energy-level matching of Fe (III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts, J. Am. Chem. Soc. 135 (2013) 10064–10072.
- [22] M. Chen, J.Z. Ma, B. Zhang, G.Z. He, Y.B. Li, C.B. Zhang, H. He, Remarkable synergistic effect between {001} facets and surface F ions promoting hole migration on anatase TiO₂, Appl. Catal. B 207 (2017) 397–403.
- [23] M. Chen, C. Zhang, H. He, Insights into designing photocatalysts for gaseous ammonia oxidation under visible light, Environ. Sci. Technol. 54 (2020) 10544–10550.
- [24] M. Chen, J.Z. Ma, B. Zhang, F. Wang, Y.B. Li, C.B. Zhang, H. He, Facet-dependent performance of anatase TiO₂ for photocatalytic oxidation of gaseous ammonia, Appl. Catal. B 223 (2018) 209–215.
- [25] G.Q. Cao, N.A. Deskins, N. Yi, Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau, Environ. Pollut. 285 (2021), 117503.
- [26] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.-S. Nam, B.K. Cho, Hydrothermal stability of CuSSZ-13 for reducing NO_x by NH₃, J. Catal. 311 (2014) 447–457.
- [27] L. Liu, F. Gao, H. Zhao, Y. Li, Tailoring Cu valence and oxygen vacancy in Cu/TiO₂ catalysts for enhanced CO₂ photoreduction efficiency, Appl. Catal. B. 134–135 (2013) 349–358.
- [28] M. Jung, J.N. Hart, J. Scott, Y.H. Ng, Y. Jiang, R. Amal, Exploring Cu oxidation state on TiO₂ and its transformation during photocatalytic hydrogen evolution, Appl. Catal. A 521 (2016) 190–201.
- [29] M.H. Jeong, J. Sun, G.Y. Han, D.H. Lee, J.W. Bae, Successive reduction-oxidation activity of FeO_x/TiO₂ for dehydrogenation of ethane and subsequent CO₂ activation, Appl. Catal. B: Environ. 270 (2020), 118887.
- [30] H. Zhang, W. Wang, H. Zhao, L. Zhao, L.-Y. Gan, L.-H. Guo, Facet-dependent interfacial charge transfer in Fe (III)-grafted TiO₂ nanostructures activated by visible light, ACS Catal. 8 (2018) 9399–9407.
- [31] H. Yu, H. Irie, Y. Shimodaira, Y. Hosogi, Y. Kuroda, M. Miyauchi, K. Hashimoto, An efficient visible-light-sensitive Fe (III)-grafted TiO₂ photocatalyst, J. Phys. Chem. C 114 (2010) 16481–16487.
- [33] Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts, Appl. Catal. B 100 (2010) 386–392.
- [34] N. Murakami, T. Chiyoya, T. Tsubota, T. Ohno, Switching redox site of photocatalytic reaction on titanium (IV) oxide particles modified with transition-

metal ion controlled by irradiation wavelength, Appl. Catal. A 348 (2008) 148–152.

- [35] S.L. Wang, X. Luo, X. Zhou, Y. Zhu, X. Chi, W. Chen, K. Wu, Z. Liu, S.Y. Quek, G. Q. Xu, Fabrication and properties of a free-standing two-dimensional titania, J. Am. Chem. Soc. 139 (2017) 15414–15419.
- [36] S.-J. Yuan, J.-J. Chen, Z.-Q. Lin, W.-W. Li, G.-P. Sheng, H.-Q. Yu, Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide, Nat. Commun. 4 (2013) 2249.
- [37] M. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, Photogenerated defects in shape-controlled TiO₂ anatase nanocrystals: a probe to evaluate the role of crystal facets in photocatalytic processes, J. Am. Chem. Soc. 133 (2011) 17652–17661.
- [38] M.M. Montemore, M.A. van Spronsen, R.J. Madix, C.M. Friend, O₂ activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts, Chem. Rev. 118 (2018) 2816–2862.
- [39] J. Resasco, L. DeRita, S. Dai, J.P. Chada, M. Xu, X. Yan, J. Finzel, S. Hanukovich, A. S. Hoffman, G.W. Graham, S.R. Bare, X. Pan, P. Christopher, Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: the case of Pt/CeO₂, J. Am. Chem. Soc. 142 (2020) 169–184.
- [40] B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, T. Zhang, Strong metal-support interactions between Pt single atoms and TiO₂, Angew. Chem. Int. Ed. 59 (2020) 11824–11829.
- [41] H. Wang, J.X. Liu, L.F. Allard, S. Lee, J. Liu, H. Li, J. Wang, J. Wang, S.H. Oh, W. Li, M. Flytzani-Stephanopoulos, M. Shen, B.R. Goldsmith, M. Yang, Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms, Nat. Commun. 10 (2019) 3808.
- [42] D. Kunwar, S. Zhou, A. DeLaRiva, E.J. Peterson, H. Xiong, X.I. Pereira-Hernández, S.C. Purdy, R. ter Veen, H.H. Brongersma, J.T. Miller, H. Hashiguchi, L. Kovarik, S. Lin, H. Guo, Y. Wang, A.K. Datye, Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support, ACS Catal. 9 (2019) 3978–3990.
- [43] M. Cargnello, V.V. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts, Science 341 (2013) 771–773.
- [44] G. Chen, Y. Zhao, G. Fu, P.N. Duchesne, L. Gu, Y. Zheng, X. Weng, M. Chen, P. Zhang, C.W. Pao, J.F. Lee, N. Zheng, Interfacial effects in iron-nickel hydroxideplatinum nanoparticles enhance catalytic oxidation, Science 344 (2014) 495–499.
- [45] Y.-Q. Su, Y. Wang, J.-X. Liu, I.A.W. Filot, K. Alexopoulos, L. Zhang, V. Muravev, B. Zijlstra, D.G. Vlachos, E.J.M. Hensen, Theoretical approach to predict the stability of supported single-atom catalysts, ACS Catal. 9 (2019) 3289–3297.