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ABSTRACT
Although much attention has been paid to investigating and controlling air pollution in China, the trends of
air-pollutant concentrations on a national scale have remained unclear. Here, we quantitatively investigated
the variation of air pollutants in China using long-term comprehensive data sets from 2013 to 2017, during
which Chinese government made major efforts to reduce anthropogenic emission in polluted regions. Our
results show a significant decreasing trend in the PM2.5 concentration in heavily polluted regions of eastern
China, with an annual decrease of∼7% compared with measurements in 2013.Themeasured decreased
concentrations of SO2, NO2 and CO (a proxy for anthropogenic volatile organic compounds) could
explain a large fraction of the decreased PM2.5 concentrations in different regions. As a consequence, the
heavily polluted days decreased significantly in corresponding regions. Concentrations of organic aerosol,
nitrate, sulfate, ammonium and chloride measured in urban Beijing revealed a remarkable reduction from
2013 to 2017, connecting the decreases in aerosol precursors with corresponding chemical components
closely. However, surface-ozone concentrations showed increasing trends in most urban stations from 2013
to 2017, which indicates stronger photochemical pollution.The boundary-layer height in capital cities of
eastern China showed no significant trends over the Beijing–Tianjin–Hebei, Yangtze River Delta and Pearl
River Delta regions from 2013 to 2017, which confirmed the reduction in anthropogenic emissions. Our
results demonstrated that the Chinese government was successful in the reduction of particulate matter in
urban areas from 2013 to 2017, although the ozone concentration has increased significantly, suggesting a
more complex mechanism of improving Chinese air quality in the future.
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INTRODUCTION
Particulatematter (PM) andozone are themain pol-
lutants that play important roles in climate change
and human health [1–6]. In addition, high con-
centrations of surface ozone in photochemical pol-
lution have been reported, which weaken net pri-
mary production [7–10]. In particular, air-pollution
episodes have occurred frequently in the latest
decades in China. For example, a series of inten-
sive haze-pollution episodes occurred in eastern
China during January of 2013, in which the peak

hourly averaged mass concentration of PM2.5 ex-
ceeded 500 μg m−3 in Beijing and its surround-
ings [11,12]. High concentrations of aerosol pre-
cursors (e.g. volatile organic compounds (VOCs),
NOx, SO2 and NH3) and secondary aerosol for-
mation, combined with aerosol and boundary-layer
feedback, are considered to be responsible for parti-
cle pollution and photochemical pollution [13–16].
A recent review clearly summarized that severe haze
formation was a synergetic effect of interactions
between anthropogenic emissions and atmospheric
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Figure 1. (a) Annual mass concentration of PM2.5 in China, Jing-Jin-Ji (BTH), Yangtze River Delta (YRD) and Pearl River Delta
(PRD) from 2013 to 2017. The mass concentrations of PM2.5 were calculated from 74 key cities in China. The upper and
lower boundaries of the boxes represent the 75th and 25th percentiles; the line within the box represents the median value;
the whiskers above and below the boxes represent the 90th and 10th percentiles; the points within the box represent the
mean value. (b) Annual mixing ratio of ozone in China, BTH, YRD and PRD from 2013 to 2017. (c) Variation ratio of PM2.5

concentration in 2017 compared with that in 2013. The BTH region, YRD region and PRD region are marked by green, red and
purple squares, respectively. (d) Variation ratio of ozone concentration in 2017 compared with that in 2013.

processes, highlighting that further knowledge about
emission sources, physical/chemical mechanisms
and interactions with meteorology during haze pe-
riods was needed to reveal the causes, mechanisms
and trends of haze [17].

From the beginning of 2013, the central govern-
ment of China took lots of measures to improve
the air quality in the Beijing–Tianjin–Hebei (BTH),
the Yangtze River Delta (YRD) and the Pearl River
Delta (PRD) regions. In particular, the state coun-
cil announced clean-air action in September of 2013,
aiming to reduce concentrations of PM2.5 in BTH,
YRDandPRD in the next 5 years by asmuch as 25%,
20% and 15%, respectively. As a response, the local
governments began to takepractical action to reduce
the primary emissions of both gases and PM. For in-
stance, more strict emission standards for thermal
power plants, industry and on-road vehicles were
promulgated from 2013 [18]. Moreover, the Min-
istry of Ecology and Environment of China (MEE)
established a monitoring network in order to mea-

sure the spatio-temporal variation in air pollutants.
Invited by the MEE and the state council of China,
comprehensive evaluation of the variation in air pol-
lutants from2013 to 2017was carried out during the
year 2018.

In this study, we show the characteristics of the
results based on observed data sets from 2013 to
2017. The results will benefit our knowledge about
the current air-pollution situation and policymaking
for future air-pollution control.

RESULTS
Decreasing trends of PM2.5 concentration
but increasing ozone-mixing ratio
Figure 1a shows the annual PM2.5 concentra-
tions in China and in the BTH, YRD and PRD
regions. The annual-average concentration of PM2.5
in China, calculated from measurements in 74
cities, was 72.3 ± 37.4 μg m−3 in 2013 and the
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annual-average concentrations in BTH, PRD
and YRD were 106.1 ± 36.7, 67.5 ± 13.2 and
47.2 ± 6.6 μg m−3, respectively. These values are
1.3–3.0 times the threshold value of 35 μg m−3

suggested by the World Health Organization,
which clearly demonstrate a serious particle-
matter-pollution problem. However, with the
implementation of clean-air action, the annual
PM2.5 concentration in China decreased signifi-
cantly from 72.3 ± 37.4 to 47.4 ± 20.6 μg m−3,
the most significant decrease being observed in
the BTH region, where the annual-average PM2.5
concentration decreased by about 40% from 106.1
to 64.3μg m−3. Among the three regions in eastern
China, the PRD region has the lowest PM2.5 con-
centration and, accordingly, showed also the lowest
percentage of PM2.5 reduction due to the respective
small capability of emission reduction. Figure 1c
shows the absolute decrease in concentrations from
2013 to 2017 in different cities in China. The most
significant reduction of PM2.5 concentration also in
the absolute sense occurred in the BTH region, with
the decrease rate being around 4–20 μg m−3 per
year. The maximum 8-hour-average 90-percentile
(M8A90) ozone-mixing ratio is suggested by the
MEE of China to characterize the statistic potential
damage of ozone. Figure 1b shows that the annual-
average M8A90 in China, BTH, YRD and PRD
was equal to 64.3 ± 13.2, 70.4 ± 10.6, 62.4 ± 9.6
and 71.2 ± 9.8 ppb, respectively, in 2013 and that
this quantity increased to 77.4 ± 12.6, 91.5 ± 8.7,
76.2± 8.4 and 77.3± 6.5 ppb in 2017, respectively.
As shown in Fig. 1d, the most significant increase
in M8A90 occurred in BTH and YRD, the rate
increase being in the range of 3–12 ppb per year.
Spatially, it seems that the increases in ozone
concentrations coincided with the decreases in
PM2.5 concentrations. Compared with the global
distribution of surface ozone, Lu et al. [7] have
demonstrated that the 4MDA8 (the fourth-highest
daily maximum 8-hour average) and Perc98 (98th
percentile of hourly concentrations) ozone con-
centrations were 86.0 ± 14.7 and 80.7 ± 14.1 ppb
in China during 2013–2017, which are 20–25%
higher than the average values in Europe and
the USA.

Decreasing aerosol-precursor gas
concentrations based on field
measurements
Differently from the concurrently decreasing PM2.5
and surface ozone in developed countries, such
as the USA, significant increases in surface-ozone
concentrations took place along with reductions in
PM2.5 concentrations in corresponding regions in

China (e.g. BTH) [19]. Since simultaneous VOC
measurements on a national scale are lacking, it
is difficult to estimate trends in VOC concentra-
tions over the period 2013–2017. However, consid-
ering the similar sources of anthropogenic VOCs
and CO, the variability in the CO concentration
can be used as a proxy for the variability in anthro-
pogenic VOC concentrations in a specific region
[20]. This proxy approach was earlier applied to the
analysis of the ozone weekend effect in North China
Plain [2]. As shown in Fig. 2a, the CO concentra-
tions in 2013 were equal to 1.0 ± 0.4, 1.4 ± 0.3,
0.8 ± 0.2 and 0.8 ± 0.2 ppm in China, BTH, YRD
and PRD, respectively. These concentrations de-
creased to 0.7 ± 0.3, 1.1 ± 0.3, 0.7 ± 0.1 and
0.7 ± 0.1 ppm in 2017, the corresponding percent-
ages of the decrease being 30%, 21%, 12% and 12%.

The SO2 concentrations in 2013 were equal to
14.1±8.2, 24.8±11.2, 10.7±3.0 and7.2±2.4 ppb
in China, BTH, YRD and PRD, respectively, de-
creasing to 5.5 (12%), 8.0 (13%), 4.1 (13%) and
3.2 ppb (11%) in 2017. As presented in Fig. 2b,
the reduction was most significant in BTH, with the
rate of decrease at ∼4 ppb per year. SO2 emissions
come mainly from coal combustion in power plants
and residential heating, so the reduction in SO2
concentrations should be driven by the decreased
emissions of these factors [18,21]. Previous stud-
ies have suggested that sulfate is an important com-
ponent in PM2.5, with an average mass fraction of
around 18% in urban cities in China [22]. There-
fore, the reduction in SO2 may explain the reduc-
tion in PM2.5 concentration to some extent. As a
main precursor of nitrate aerosol, the NO2 concen-
trations in 2013were equal to 21.6± 5.2, 25.1± 5.0,
21.3± 3.8 and 22.2± 3.1 ppb in China, BTH, YRD
and PRD, respectively (Fig. 2c). These concentra-
tions decreased to 19.2± 4.1, 22.5± 4.7, 18.2± 3.2
and 18.1 ± 2.7 ppb in 2017, respectively, the corre-
spondingpercentagesof thedecreases being equal to
11%, 10%, 15% and 18%. Due to the high number of
on-road vehicles and vast emissions of NOx [21], it
is still a challenge to reduce NO2 and nitrate aerosol
concentrations in China. Moreover, the interaction
between NO2 and SO2 could lead to enhanced pro-
duction of the sulfate aerosol [23,24]; therefore, we
suggest that a reduction in NOx emissions is urgent
for improving the air quality, especially from indus-
try and vehicles rather than power sectors.

DISCUSSION
We suppose that the decreased concentration of
PM2.5 should be related to decreased aerosol-
precursor gas concentrations. VOCs, NO2 and SO2
are generally considered as precursors of organic,
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Figure 2. Annual mixing ratio and variation of CO (a), SO2 (b) and NO2 (c) in China, BTH, YRD and PRD from 2013 to 2017. The mixing ratios were
calculated from 74 key cities in China. The upper and lower boundaries of the boxes represent the 75th and 25th percentiles; the line within the box
represents the median value; the whiskers above and below boxes represent the 90th and 10th percentiles; the points within the box represent the
mean value. The differences between the mixing ratios at 74 cities in 2017 were compared with those in 2013.

nitrate and sulfate components in aerosols, re-
spectively [25]. To illustrate how aerosol chem-
ical composition varies with the various aerosol-
precursor gas concentration, we take our long-term
aerosol composition measurements in urban Bei-
jing as an example. The field measurements showed
that the annual-average mass concentrations of or-
ganic aerosol, nitrate, sulfate, ammonium and chlo-
ride, remarkably decreased between 2013 and 2017
(Fig. 3), consistent with the significant decrease
in PM2.5 on a regional scale. Considering specifi-
cally the heating periods responsible for frequent air-
pollution episodes inBeijing during the past decades
[26], we can see that the organic aerosol, nitrate,
sulfate, ammonium and chloride concentrations in
NR PM1 decreased during the heating periods be-
tween 2013 and 2017 (Fig. 4). While the mass con-
centration of these compounds decreased consider-
ably from 2013 to 2017, their mass fractions did not
show similarly large changes. The mass fractions of
sulfate and chloride decreased from 18.4% to 11.4%
and from 3.9% to 3.3%, respectively, whereas the
mass fractions of both nitrate and ammonium in-
creased from 16.4% to 20.0% and from 10.7% to
11.6%, respectively.

The formation of surface ozone is determined
by VOC and NOx concentration and by the
intensity of UV radiation [27]. The increased

surface-ozone concentrations may result from the
increased UV radiation, which could photolysis
more NO2 into NO and consequently increase
ozone formation. Hu et al. [28] found that the solar-
radiation intensity increased by 1.93Wm−2 per year
between 2005 and 2015 in Beijing, while the PM2.5
concentration showed a decreasing trend. The in-
creased solar radiation, especially ultraviolet radia-
tion, due to decreasing PM2.5 concentrations likely
explains the increasedozone concentrations to some
extent. It is alsoworth noting that the anthropogenic
VOC(COas proxy) decreases have been larger than
those of NO2 over most regions of eastern China.
Changes in the VOCs/NOx ratio and its spatial vari-
ability may provide useful insights into the ozone-
formation mechanisms over different regions [2]. A
study found that the increment of summertime sur-
face ozone was caused by decreased uptake of HO2
in the aerosol phase using the GEOS-Chem model
in China [29]. Also, a very recent model study indi-
cated that bothVOCs andNOx are important for ru-
ral ozone formation during August of 2013 in North
China [30]. Considering the complexity of photo-
chemical control, we suggest that detailed chemical
and physical processes leading to increased surface-
ozone concentration on a regional scale warrant fur-
ther investigation both from model simulations and
field observations.
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Figure 3. Annual mass concentrations of NR PM1 (a), organic (b), nitrate (c), sulfate (d), ammonium (e) and chloride (f) in
urban Beijing by HR-ToF-AMS from 2013 to 2017. The upper and lower boundaries of the boxes represent the 75th and 25th
percentiles; the line within the box represents the median value; the whiskers above and below the boxes represent the
90th and 10th percentiles; the points within the box represent the mean value. Note that the annual mass concentrations
were calculated from different periods during a year, since AMS was not always working. The period with measurement
is shown in the Supplementary Data. The annual-average mass concentrations of organic, nitrate, sulfate, ammonium and
chloride were 27.0 ± 26.2, 10.0 ± 12.2, 10.1 ± 14.6, 6.1 ± 7.2 and 2.2 ± 3.1 μg m−3, respectively, in 2013 and decreased
to 10.8 ± 12.5, 6.5 ± 8.6, 4.2 ± 6.2, 3.7 ± 4.5 and 0.7 ± 1.4 μg m−3, respectively, in 2017.

In order to get insight into how PM2.5
concentration reductions affected the frequency
of air-pollution episodes, we finally investigated
the temporal evolution of heavily polluted days
(HPDs), defined as daily PM2.5 mass concentration
>150 μg m−3 (see Fig. 5). HPDs were rather
frequent in 2013, with an average of 32 days over

China. In the BTH region, nearly 20% of total days
(74 days) were heavily polluted in 2013, followed
by the YRD region (32 days). The PRD region
had the most days with daily PM2.5 concentration
<150 μg m−3, with only 1 HPD. The number
of HPDs decreased significantly from 2013 to
2017, having values of 8, 24, 4 and 0 in China,
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Figure 4. Variation of (a) mass concentration in NR PM1 and (b) mass fraction of or-
ganic, nitrate, sulfate, ammonium and chloride during heating seasons from 2013 to
2017.

BTH, YRD and PRD, respectively, in 2017. We
assign a significant fraction of the reduced HPD
to emission reductions, even though variations in
the meteorology parameters may also have con-
tributed to the observed trend, as reported earlier for
Beijing [31].

Boundary-layer height (BLH) is a critical param-
eter that influences the concentrations of air pollu-
tants [32].To further investigate the impact ofmete-
orology conditions on PM2.5 and ozone, we studied
the variation of BLH from ERA-interim data from
2013 to 2017. As shown in Fig. 6, the monthly vari-
ation in BLH slightly decreased over China, YRD
and PRD, while an increased trend occurred in the
BTH region. However, the trends were not signif-
icant, as shown in Fig. 6. The highest increases in
BLH over the BTH region since 2013 were, to some
extent, due to the reduction in PM, which favored
the development of BLH via increased solar radia-
tion reaching the surface. For the other regions, the
variation in BLHmay be influenced bymeteorology
parameters and air-pollution and urban-heat island
[33]. In a word, the variation in BLH from 2013 to
2017 was not the driving factor that led to decreased
PM2.5 concentrations in eastern China, since BLH
did not show significant variations as PM2.5 and sur-
face ozone.

The comprehensive evaluation of PM2.5 mass
concentrations and O3-mixing ratios in China from
2013 to 2017 clearly shows that the PM2.5 concen-
tration significantly decreased in easternChina from
72 to 47 μg m−3, while the maximum average O3
daily concentration at the 90th percentile showed
increasing trends, with the mixing ratio changing
from64 to 79 ppb. In addition, the concentrations of
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NO2, SO2 and CO decreased. Field-measurement
data in urban Beijing showed decreased concen-
trations of organic aerosol, nitrate and sulfate, and
that the decreased aerosol components were closely
related to changes in their precursor gas concentra-
tions. Especially in the BTH region, the concentra-
tion decreases in these components clearly suggests
that the clean-air action starting from 2013 has
decreased atmospheric PM pollution significantly
due to strict emission controls. However, the level
of photochemical pollution, measured in terms of

the ozone concentration, has gradually increased in
urban areas. Our results suggest that more research
and attention should be put on photochemical
pollution, as well as on PM pollution, in the future.

METHODS AND MATERIALS
The data were obtained from the Chinese
National Environmental Monitoring Center
(http://113.108.142.147:20035/emcpublish). The
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PM2.5 mass concentrations were measured
using TEOM RP1405 (Thermo Scientific,
http://www.thermoscientific.com). The reso-
lution and precision of the instrument for 1 hour
were 0.1 and ±1.5 μg m−3, respectively. The filters
were exchanged and the flow ratio was monitored
and calibrated routinely. The volume mixing ratios
of ozone, SO2, NO2 and CO were measured
using 49i, 43i, 42i and 48i (Thermal Environment
Instruments (TEI) Inc.), respectively. The mixing
ratio of the gas pollutants was calculated under stan-
dard conditions. A high-resolution time-of-flight
aerosol mass spectrometer was deployed in urban
Beijing to measure the chemical compositions
of non-refractory submicron aerosol [34]. The
campaign periods during each year are listed in the
Supplementary Data file. The mass concentrations
of organic, nitrate, sulfate, ammonium and chloride
were recorded and averaged over 1 hour for further
analysis.TheERA-interim reanalyses are assimilated
results including model product and various mea-
surements [35]. Its model-layers data contain 60
vertical layers (starting about 25m from the surface,
decreasing to about 500 m around 500 hPa),
which has been used to calculate boundary-layer
heights [36]. The reanalysis data with a horizontal
resolution of 0.75◦×0.75◦ and a time resolution of
6 hours were used for BLH calculation and then we
interpolated the BLHs to 26 city sites.
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Supplementary data are available atNSR online.
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32. Petäjä T, Järvi L and Kerminen VM et al. Enhanced air pollution via aerosol-
boundary layer feedback in China. Sci Rep 2016; 6: 18998.

33. Guo J, Li Y and Cohen JB et al. Shift in the temporal trend of boundary layer
height in China using long-term (1979–2016) radiosonde data. Geophys Res
Lett 2019; 46: 6080–9.

34. DeCarlo PF, Kimmel JR and Trimborn A et al. Field-deployable, high-resolution,
time-of-flight aerosol mass spectrometer. Anal Chem 2006; 78: 8281–9.

35. Dee DP, Uppala SM and Simmons AJ et al. The ERA-Interim reanalysis: config-
uration and performance of the data assimilation system. Q J R Meteorol Soc
2011; 137: 553–97.

36. Guo J, Miao Y and Zhang Y et al. The climatology of planetary boundary layer
height in China derived from radiosonde and reanalysis data. Atmos Chem Phys
2016; 16: 13309–19.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/7/8/1331/5766229 by R

esearch C
enter of Eco-Environm

ental Sciences, C
AS user on 15 Septem

ber 2020


