

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

The smart surface modification of Fe_2O_3 by WO_x for significantly promoting the selective catalytic reduction of NO_x with NH₃

Fudong Liu^{a,1,2}, Wenpo Shan^{b,2}, Zhihua Lian^b, Jingjing Liu^{a,c}, Hong He^{a,b,c,*}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China ^c University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Keywords: Fe-based catalyst Surface modification Selective catalytic reduction Nitrogen oxides abatement Diesel engines

ABSTRACT

The deposition of WO_x species using conventional impregnation method is a very simple and efficient way to adjust the surface acidity and redox ability of hematite Fe₂O₃ simultaneously, significantly improving its catalytic activity and N_2 selectivity for the selective catalytic reduction of NO_x with NH_3 (NH_3 -SCR). The deposited WO_x species on Fe₂O₃ surface was in highly unsaturated coordination state acting as an effective surface modifier. Through the electronic inductive effect in W–O–Fe bonds, the oxidation ability of surface $Fe^{(3+\delta)+}$ species was well increased, yet the over-oxidation of NH₃ on bulk Fe₂O₃ was significantly suppressed, which was quite beneficial to the improvement of NH₃-SCR activity and N₂ selectivity simultaneously. Besides, the deposited WOx species could also supply abundant surface reactive Lewis and Brønsted acid sites for NH3 adsorption and activation during the SCR reaction. The NH₃-SCR process on this WO_x/Fe₂O₃ catalyst mainly followed an Eley-Rideal (E-R) reaction pathway between gaseous NO and active NH₃ adsorbed species, which was the main reason for its superior SO₂ resistance. This opens a new route for the preparation of highly efficient, selective, cost effective and SO₂ resistant NH₃-SCR catalysts for the deNO_x process on diesel engines.

1. Introduction

Nitrogen oxides (NOx, including NO and NO2) can induce major air pollution problems, such as acid rain, photochemical smog and haze. Great efforts have been devoted to the development and application of NO_x emission control technologies for fossil fuel combustions [1,2]. Due to its high efficiency, excellent selectivity and low cost, selective catalytic reduction of NOx with NH3 (NH3-SCR) has been widely applied for the removal of NO_x from stationary sources since 1970s [3], and this technology has also become the dominant deNO_x technology for diesel vehicles to meet the ever tightened emission standards [4].

Catalysts play a key role in the practical application of NH₃-SCR technology [5,6]. The commercial NH₃-SCR catalyst for stationary source NO_x reduction was mainly WO₃ or MoO₃ doped V_2O_5/TiO_2 [3,7], which was also applied as the first generation NH₃-SCR catalyst on diesel vehicles in Europe. However, the toxicity of active vanadium species, together with high N₂O formation at high temperatures, has restrained its mobile applications [8]. Therefore, great efforts have

been made to develop substitutive, environmentally benign NH₃-SCR catalysts for diesel vehicle emission control. In recent years, some transition metal exchanged zeolites, such as Fe-ZSM-5 [9], and Cu-SSZ-13 [10,11], and vanadium-free oxide catalysts, such as CeO₂-WO₃ oxide [12,13] and CeO₂-TiO₂ oxide [14,15], were developed as potential substitutions for vanadium-based NH3-SCR catalysts in diesel application.

Iron oxides are environmentally-benign materials which can be used as catalysts for various reactions. The reduction of NO_x with NH₃ can also be catalyzed by Fe-based materials due to their excellent redox ability between Fe³⁺ and Fe²⁺. The previous studies mainly focused on the shape or morphology-controlled synthesis of Fe₂O₃ [16], the achievement of high dispersion of Fe₂O₃ onto other supports [17] or the synthesis of mixed oxide catalysts with new active phase of Fe species [18]. The developed Fe-based oxide catalysts include γ -Fe₂O₃ nanorods¹⁶, Fe₂O₃-PILC [19], FeTiO_x [18], Fe-Ti spinel [20], Fe₂O₃-SiO₂ aerogel [21], Fe₂O₃/WO₃/ZrO₂ [17], and carbon materials supported Fe₂O₃ [22,23]. However, there is barely any report on the surface

E-mail address: honghe@rcees.ac.cn (H. He).

² Equal Contribution.

https://doi.org/10.1016/j.apcatb.2018.02.052 Received 16 September 2017; Received in revised form 25 January 2018; Accepted 23 February 2018

Available online 24 February 2018

0926-3373/ © 2018 Published by Elsevier B.V.

^{*} Corresponding author at: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

¹ Current address: BASF Corporation, 25 Middlesex Essex Turnpike, Iselin, New Jersey 08830, United States.

modification of Fe₂O₃ to improve its NH₃-SCR performance. The tungsten oxide is usually used as the promoter for NH₃-SCR catalysts to improve the hydrothermal stability or increase the surface acidity [24,25], which has been successfully used to modify CeO₂ for deNO_x process [26]. In this paper, the surface modification effect of WO_x species on Fe₂O₃ will be investigated in detail, supplying a simple and new way to prepare highly efficient NH₃-SCR catalyst for practical use in diesel NO_x reduction.

2. Experimental

2.1. Catalyst preparation

The pristine Fe₂O₃ material was prepared by conventional precipitation method using Fe(NO₃)₃·9H₂O as precursor and urea as precipitator. After the dissolution of Fe(NO₃)₃·9H₂O into distilled water, excessive urea aqueous solution was added with a urea/Fe molar ratio of 10:1. The mixed solution was then heated to 90 °C and held there for 12 h under vigorous stir. After filtration and washing with distilled water, the resulting precipitate cake was dried at 100 °C for 12 h and subsequently calcined at 500 °C for 3 h in air. The resulting Fe₂O₃ material was then grounded into fine powder for use.

The $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 1$, 5, 10 by weight) were prepared by conventional impregnation method using the above-mentioned Fe₂O₃ as support and (NH₄)₆H₂W₁₂O₄₀·5H₂O as WO_x precursor. The calculated amount of (NH₄)₆H₂W₁₂O₄₀·5H₂O precursor was firstly dissolved into distilled water in the presence of H₂C₂O₄·2H₂O with equal weight. Then, the Fe₂O₃ powder was added into the solution under vigorous stir. After impregnation, the excess water was removed in a rotary evaporator at 80 °C. The resulting samples were dried at 100 °C for 12 h and finally calcined at 500 °C for 3 h in air. Before NH₃-SCR activity tests, the $\delta\%$ WO_x/Fe₂O₃ power catalysts were pressed into pellets, crushed and sieved to 40–60 mesh. The pristine WO₃ sample was also prepared as reference material by direct decomposition of (NH₄)₆H₂W₁₂O₄₀·5H₂O in air at 600 °C for 3 h.

2.2. Activity test

The steady state NH₃-SCR and NO/NH₃ oxidation activity over $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 0, 1, 5, 10$) was tested in a fixed-bed quartz tube reactor, and the reaction conditions were controlled as follows: 40–60 mesh catalyst, 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, 100 ppm SO₂ (when used), 5% H₂O (when used) and N₂ balance; 500 ml/min total flow rate, and catalyst volume of 0.6 mL or 0.3 mL, corresponding to gas hourly space velocity (GHSV) of 50,000 h⁻¹ or 100,000 h⁻¹. The effluent gas including NO, NH₃, N₂O and NO₂ was analyzed using an FTIR spectrometer (Nicolet Nexus 670) equipped with a low volume multiple-path gas cell (2 m). The NO_x conversion and N₂ selectivity were calculated according to the formulas described in our previous study [27].

2.3. Characterizations

The N₂ physisorption isotherms were measured at 77 K on Quantachrome Quadrasorb SI-MP. Prior to N₂ physisorption, the samples were degassed at 300 °C for 4 h. Surface areas were determined by BET equation in 0.05–0.35 partial pressure range. Pore volumes and average pore radius were determined by BJH method from desorption and adsorption branches of the isotherms, respectively.

The XRD measurements of $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 0, 1, 5, 10$) were carried out on PANalytical X'Pert Pro Diffractometer with Cu K_{α} radiation source ($\lambda = 0.15406$ nm). The data of 2 θ from 10 to 80° were collected at 8°/min with step size of 0.07°.

The *ex situ* XAFS of W-L_{III} edge were measured in fluorescence mode for $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 1, 5, 10$) and in transmission mode for WO₃ reference on BL14W1 beamline, Shanghai Synchrotron Radiation

Facility (SSRF). The ex situ XAFS of Fe-K edge in δ% WO_x/Fe₂O₃ catalysts ($\delta = 1, 5, 10$) and Fe₂O₃ reference were measured in transmission mode on 1W1B beamline, Beijing Synchrotron Radiation Facility (BSRF). The in situ XAFS of Fe-K edge in δ% WO_x/Fe₂O₃ catalysts $(\delta = 1, 5, 10)$ and Fe₂O₃ reference during the temperature programmed reduction process in 5 vol.% H₂/He from room temperature to 900 °C were measured in transmission mode using quick XAFS (QXAFS) method on BL-12C beamline, Photon Factory, High Energy Accelerator Research Organization (KEK), Japan. XAFS Data were analyzed using the REX2000 program (Rigaku Co.). XANES were normalized with edge height and then taken the first-order derivatives to compare the variation of absorption edge energies. EXAFS oscillation $\gamma(k)$ was extracted using spline smoothing with a Cook-Savers criterion [28], and the filtered k^3 -weighted $\chi(k)$ was Fourier transformed into R space in the k range of 2.0–10.5 \AA^{-1} for W–L_{III} edge and 2.0–13.0 \AA^{-1} for Fe-K edge. In the curve fitting step, the possible backscattering amplitude and phase shift were calculated using FEFF8.4 code [29].

The XPS of $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 1, 5, 10$) and Fe₂O₃, WO₃ references was recorded on Scanning X-ray Microprobe (PHI Quantera, ULVAC-PHI, Inc.) using Al K_{α} radiation. Binding energies of W 4f, Fe 2p and O 1s were calibrated using C 1s peak (BE = 284.8 eV).

The H₂-TPR experiments of $\delta\%$ WO_x/Fe₂O₃ catalysts (δ = 1, 5, 10) and Fe₂O₃, WO₃ references were carried out on an AutoChem 2920 Chemisorption Analyzer (Micromeritics). The samples with 50 mg weight were pretreated in a quartz tube reactor at 300 °C in a flow of air (50 ml/min) for 1 h and then cooled down to room temperature. Afterwards, the H₂-TPR procedures were performed in a flow of 10 vol. % H₂/Ar (50 ml/min) from room temperature to 1000 °C with the ramping rate of 10 °C/min.

The in situ DRIFTS were performed on an FTIR spectrometer (Nicolet Nexus 670) equipped with a smart collector and an MCT/A detector, including the NH₃/(NO + O₂) adsorption over $\delta WO_x/Fe_2O_3$ catalysts ($\delta = 0, 1, 5, 10$) and the transient reactions (*i.e.* reaction between NO + O_2 and pre-adsorbed NH₃ species, reaction between NH₃ and pre-adsorbed NO_x species, and reaction in NH₃ + NO + O₂ atmosphere) over Fe₂O₃ reference and 5% WO_x/Fe₂O₃ catalyst. The samples were pretreated at 400 $^\circ C$ for 0.5 h in 20 vol.% O_2/N_2 and then cooled down to 200 °C. The background spectra were collected in flowing N2 and automatically subtracted from the sample spectra. The reaction conditions were controlled as follows: 500 ppm NH₃, 500 ppm NO, 5 vol.% O2, N2 balance and 300 ml/min flow rate. For each sample, the $NH_3/(NO + O_2)$ adsorption time was controlled at 1 h. Afterwards, the samples were purged by N2 for another 0.5 h until the infrared spectroscopy signals were stabilized. Finally, (NO + O2)/NH3 was introduced into the gas chamber to react with the pre-adsorbed NH₃/NO_x species for 1 h. All spectra were recorded by accumulating 100 scans with 4 cm^{-1} resolution.

3. Results and discussion

3.1. NH₃-SCR activity and the effects of SO₂, H₂O and GHSV

The influence of the deposition amount of WO_x species onto Fe₂O₃ on the NH₃-SCR activity was firstly investigated. As the results shown in Fig. 1, the pristine Fe₂O₃ showed very low NH₃-SCR efficiency with a rather narrow operation temperature window and relatively low N₂ selectivity in the whole temperature range. Only *ca.* 40% NO_x conversion was achieved over the un-promoted Fe₂O₃ at 300 °C. Interestingly, the simple deposition of WO_x species onto Fe₂O₃ surface resulted in a significant enhancement of deNO_x efficiency in the medium temperature range with obviously broadened operation temperature window and enhanced N₂ selectivity. For example, the deposition of only 1% WO_x onto Fe₂O₃ could promote the NH₃-SCR activity to a certain extent above 250 °C. It should be noted that, on Fe₂O₃ and 1% WO_x/Fe₂O₃ samples, the NO_x conversion at *ca.* 350 and 400 °C showed negative values, and this was probably caused by the over-oxidation of NH₃ (to

Fig. 1. The NO_x conversion as a function of reaction temperature in NH₃-SCR reaction over $\delta W WO_x/Fe_2O_3$ serial catalysts ($\delta = 0, 1, 5, 10$) under the GHSV of 50,000 h⁻¹.

NO or NO₂) at high temperatures. Significantly, with over 80% NO_x conversion can be obtained from 300 to 450 °C over the optimal 5% WO_x/Fe₂O₃ catalyst along with greatly improved N₂ selectivity. Further increasing the WO_x deposition amount to 10% led to some decrease of deNO_x activity below 400 °C possibly due to the aggregation of WO_x species or the excessive coverage of catalytically active sites, which will be verified in the following characterization sections.

For practical use on diesel engines, high SO₂ durability is usually required for the potential NH₃-SCR catalysts. Choosing the 5% WO_x/ Fe₂O₃ catalyst as the optimal candidate, we have systematically investigated its SO₂ durability not only at a fixed temperature point but also in the whole temperature range. As shown in Fig. 2A, the introduction of 100 ppm SO₂ into the SCR atmosphere did not influence the deNO_x efficiency over the 5% WO_x/Fe₂O₃ catalyst at 300 °C, and the NO_x conversion could always maintain above 80% even after 24 h reaction. The NH₃-SCR activity of the sulfated 5% WO_x/Fe₂O₃ catalyst as a function of reaction temperature was also tested in comparison with the fresh one, and the results are shown in Fig. 2B. No obvious difference in the SCR activity can be observed over the fresh and sulfated 5% WO_x/Fe₂O₃ catalyst, indicating that this WO_x promoted Fe₂O₃ catalyst is highly resistant to the SO₂ poisoning which is very beneficial to its practical use.

The influences of H_2O and space velocity on the NO_x conversion over 5% WO_x/Fe_2O_3 were also tested (Fig. 3). Different effects of the presence of 5% H_2O in the feeding gas on the NO_x conversion were observed at low temperature and high temperature, respectively. The

Fig. 2. (A) The NO_x conversion as a function of reaction time in NH₃-SCR reaction over 5% WO_x/Fe₂O₃ catalyst in the presence of 100 ppm SO₂ at 300 °C under the GHSV of 50,000 h⁻¹; (B) The NO_x conversion as a function of reaction temperature in NH₃-SCR reaction over fresh and sulphated 5% WO_x/Fe₂O₃ catalysts under the GHSV of 50,000 h⁻¹.

Fig. 3. The influences of $\rm H_2O$ and GHSV on the $\rm NO_x$ conversion over 5% $\rm WO_x/Fe_2O_3$ catalyst.

 NO_x conversion was inhibited at low temperature due to the adsorption competition between H₂O and reactants (NO_x and NH_3) on the surface active sites of the catalyst, while the NO_x conversion was enhanced at high temperature owing to the suppression of the unselective oxidation of NH_3 . The increase of GHSV from 50,000 h⁻¹ to 100,000 h⁻¹ induced a further decrease of NO_x conversion at low temperature, but the NO_x conversion of over 80% could still be obtained in the typical temperature range of diesel exhaust (from 350 to 500 °C).

3.2. Surface areas and pore parameters

Derived from the N₂ physisorption results, the textural parameters of $\delta\%$ WO_x/Fe₂O₃ serial catalysts including BET surface areas, pore volumes and pore radii are shown in Table 1. With the increase of WO_x deposition amount, both the BET surface areas and pore volumes of $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 1, 5, 10$) only showed some slight decrease to a certain extent, mainly due to the blocking of partial pore channels of Fe₂O₃ by the deposited WO_x species. If normalized by the BET surface areas, the promotion effect of WO_x deposition on the NH₃-SCR activity of Fe₂O₃ axialyst exhibited the largest pore radius, which was possibly due to the presence of abundant WO_x species on this sample with relatively high dispersion degree thus obtaining more extra piled pores with larger radius.

3.3. Bulk structure of Fe₂O₃ characterized by XRD and XAFS

To investigate the influence of WO_x deposition on the crystal structure of Fe_2O_3 , both the XRD patterns and Fe-K XAFS including XANES and EXAFS were measured, as the results shown in Figs. 4, S1 and S2, respectively. Before and after WO_x deposition, no obvious difference in the diffraction peaks of hematite α -Fe₂O₃ can be observed (Fig. 4), indicating that the surface modification of Fe₂O₃ did not influence its bulk structure at all. At the same time, no diffraction peaks

Textural	parameters	of	δ%	WO _x /Fe ₂ O ₃	serial	catalysts	(δ =	1, !	5, 3	10)	and	Fe ₂ O ₃ ,	WO_3
reference	e samples.												

Samples	$S_{BET}\;[m^2g^{-1}]^a$	Pore volume $[cm^3g^{-1}]^b$	Pore radius [nm] ^c
Fe ₂ O ₃	24.1	0.31	1.5
1% WO _x /Fe ₂ O ₃	24.9	0.32	2.4
5% WO _x /Fe ₂ O ₃	24.6	0.28	2.8
10% WO _x /Fe ₂ O ₃	23.4	0.26	1.7
WO ₃	0.01	0.01	1.5

^a BET surface area.

Table 1

^b BJH desorption pore volume.

^c BJH adsorption pore radius.

Fig. 4. The powder XRD patterns of $\delta\%$ WO_x/Fe₂O₃ serial catalysts ($\delta = 0, 1, 5, 10$).

attributed to WO₃ can be observed even at high WO_x loading as 10%, suggesting that the possible strong interaction between WO_x and Fe₂O₃ could lead to the relatively high dispersion of WO_x on the Fe₂O₃ surface. Besides, the Fe-K XANES patterns of the WO_x promoted Fe₂O₃ catalysts were identical to that of pristine Fe₂O₃ (Fig. S1A), showing the same absorption edge energy of Fe³⁺ at 7127.1 eV (Fig. S1B). The Fe-K EXAFS of $\delta\%$ WO_x/Fe₂O₃ catalysts ($\delta = 0, 1, 5, 10$) in R space (Fig. S2A) and *k* space (Fig. S2B) were also quite similar to each other, exhibiting the same Fe–O and Fe–O–Fe coordination shells with similar coordination numbers and bond distances. All the above-mentioned XAFS results indicate again that the surface deposited WO_x species did not enter the lattice of hematite Fe₂O₃ to change its bulk crystal structure, only existing as a surface modifier to possibly influence the microstructure and electronic property in the outermost layers of the catalysts.

3.4. Local structure of WO_x species characterized by XAFS

By measuring the W-L_{III} XANES and EXAFS, the local structure of WO_x species on the Fe₂O₃ surface can be well analyzed, as the results shown in Figs. 5 and 6. In W-L_{III} XANES for all samples (Fig. 5A), the electron transitions from $2p_{3/2}$ orbitals to 5d orbitals are typically presented by the white line, and two overlapped peaks in the white line are observed owing to the splitting of the 5d states by the ligand field [30]. It is interesting to see that, with the increase of WO_x loading, the ratio of the sub-peak in the white line at lower energy position decreased to a certain extent, and in the 10% WO_x/Fe₂O₃ with relatively high WO_x loading, its XANES pattern became closer to that of pristine WO₃. This means that during the increase of WO_x loading amount on Fe₂O₃ surface, the coordination configuration of partial WO_x species might also change probably from tetrahedral structure to octahedral structure, which will be discussed later.

From the first-order derivatives of W-L_{III} XANES in Fig. 5B, it is clear to see that the absorption edge energy of W species in $\delta\% WO_x/Fe_2O_3$ serial catalysts (10204.5 eV) was 0.5 eV lower than that in pristine WO₃ (10,205.0 eV), indicating that the average valence of the W species in the promoted WO_x/Fe₂O₃ catalysts is actually lower than 6+. This is possibly due to the deviation of electron cloud from surface Fe³⁺ to W⁶⁺ through an electronic inductive effect as we described in our previous studies [31–33], resulting in the formation of W^{(6–\delta)+} and Fe^{(3+\delta)+} species on the catalyst surface. The XPS results in the following section will help to check if such electronic inductive effect is indeed present between surface Fe and W species.

Back to the W-L_{III} XANES, Fig. 5C shows the second-order derivatives of XANES patterns for all samples to better discriminate the two split peak positions in the white line. The gap energy between the subpeaks at higher and lower energy positions can also be determined, with this value being *ca.* 3.96 eV for $\delta\%$ WO_x/Fe₂O₃ serial catalysts and 4.52 eV for pristine WO₃. Yamazoe et al. [30] concluded in their work that this gap energy would increase as the local coordination structure of WO_x species changing from tetrahedron (-WO₄) to octahedron (-WO₆). Therefore, we can conclude that with the increase of WO_x loading amount, the ratio of -WO₄ species in the WO_x/Fe₂O₃ catalysts actually decreased and at the same time the ratio of -WO₆ species increased. The optimal 5% WO_x/Fe₂O₃ catalyst should have a well balanced ratio of -WO₄/-WO₆ species thus showing the most excellent NH₃-SCR performance.

Fig. 6A shows the EXAFS results of W-L_{III} edge in R space for $\delta\%$ $WO_{r}/Fe_{2}O_{3}$ serial catalysts and pristine WO_{3} together with the simulated EXAFS results of WO3 and Fe2WO6 using FEFF8.4 code. All the W species in $\delta WO_{x}/Fe_{2}O_{3}$ serial catalysts and pristine WO₃ exhibited the first W-O coordination shells with similar bond distances, yet quite different coordination shells above 2.0 Å were observed. For 1% WO_x / Fe₂O₃ catalyst, only a well defined coordination peak attributed to the W-O plus W-O-Fe scattering pathways can be found, indicating that at low WO_x loading the WO_x species could well disperse on the Fe_2O_3 surface without the formation of aggregated WO_x clusters at all. With the increase of WO_x loading amount to 5 and 10%, the coordination shells ascribed to W–O–W can be well identified at ca. 3.5 Å similar to that in WO3 besides of the shells owing to W-O plus W-O-Fe scatterings and W–O multiple scatterings. The WO_x species must be present on the Fe₂O₃ surface in oligomeric form under such circumstances, which can be verified by the EXAFS curve fitting results as shown in Fig. 6B. By using the W–O–W scattering pathway from WO₃ model, the coordination shells in 5% WOx/Fe2O3, 10% WOx/Fe2O3 and pristine WO₃ in the dashed rectangle in Fig. 6A can be simulated with high fitting degree, obtaining the coordination numbers of 2.4, 2.8 and 4.0, respectively, with the bond lengths at 3.83-3.86 Å. These results clearly suggest that with the increase of WO_x loading amount, the particle size of the oligomeric WO_x on Fe_2O_3 surface gradually increased, and on the optimal 5% WO_x/Fe_2O_3 catalyst the WO_x species was mainly present in the form of dimeric or trimeric clusters. Such an unsaturated coordination state of W-O-W on the catalyst surface represents the existence of abundant local W defects which can be hydroxylated by H₂O to form W-O-H species, acting as the Brønsted acid sites for NH₃ adsorption in SCR reaction.

3.5. Surface composition and electronic inductive effect characterized by XPS

The surface compositions of $\delta\%$ WO_x/Fe₂O₃ serial catalysts were characterized by XPS, as the results shown in Fig. 7 and Table 2. With the increase of WO_x loading amount from 1% to 10%, the XPS peak intensities of W 4f (Fig. 7A) showed a monotonic increase to a certain extent, and at the same time the XPS peak intensities of Fe 2p (Fig. 7B) showed a gradual decrease, which was mainly due to the coverage of Fe_2O_3 surface by the deposited WO_x species. As the semi-quantitative analysis results of the surface atomic concentrations shown in Table 1, the surface W concentration increased from 2.9% on 5% WOx/Fe₂O₃ catalyst to 4.1% on 10% WOx/Fe2O3 catalyst, while the surface Fe concentrations on these two catalysts were nearly the same (37.5% vs. 37.1%). These results indicate that the 5% WO_x loading amount might have already reached the threshold value for the total coverage of Fe_2O_3 surface by WO_x species, and further increasing the WO_x loading amount only led to the formation of multiple WO_x layers or surface converged clusters thus resulting in the decrease of NH₃-SCR performance. Besides, the deconvoluted XPS peaks of O 1s are shown in Fig. 7C, and the relative concentrations of different oxygen species (O_{β} at 529.5–530.7 eV, O_{α} at 530.8–531.6 eV, surface OH groups at 533.1-532.9 eV probably resulting from chemisorbed H₂O) [34] are presented in Table 1. It is noteworthy that with the increase of WO_x loading amount, the binding energy of O_{β} on $\delta\%$ WO_x/Fe₂O₃ catalysts showed some increase comparing to pure Fe₂O₃, and we consider that this was mainly caused by the intrinsic higher binding energy of O_β on

Fig. 5. (A) Normalized XANES spectra of W L_{III}-edge in W-containing samples, (B) corresponding first-order derivatives and (C) corresponding second-order derivatives.

 WO_x species than that on Fe_2O_3 (530.7 vs. 529.5 eV). Importantly, as we can clearly see, the deposition of WO_x onto Fe_2O_3 surface could greatly facilitate the formation of surface hydroxyls, and the optimal 5% $WO_x/$ Fe₂O₃ catalyst exhibited the most abundant surface OH groups acting as efficient Brønsted acid sites for NH₃ adsorption to supply sufficient reductant on the catalyst surface for NO_x reduction in SCR reaction.

The W-L_{III} XANES results in Fig. 5B have already shown that the average valence state of W species in $\delta WO_{x}/Fe_{2}O_{3}$ serial catalysts was relatively lower than that in pristine WO₃, and this phenomenon was much more obvious in W 4f XPS results. As clearly shown in Fig. 7A, both the binding energies of W $4f_{7/2}$ (35.1–35.5 eV) and W $4f_{5/2}$ $_2$ (37.2–37.7 eV) on $\delta\%$ WO_x/Fe₂O₃ catalysts were indeed lower than the corresponding values on pristine WO3 sample (W 4f7/2 at 35.8 eV and W $4f_{5/2}$ at 38.0 eV) [35,36], and with the increase of the WO_x loading amount on the promoted catalysts, the binding energies of W 4f gradually increased approaching the values on pristine WO₃. Feng et al. [37] also observed that the as-prepared monolayer-dispersed WO_x species on α -Fe₂O₃ (0001) surface had mixed oxidation states of W⁶⁺ and W^{5+} . At the same time, as shown in Fig. 7B, the deposition of WO_x species onto Fe₂O₃ surface also resulted in the increase of binding energies of both Fe 2p_{3/2} (710.9–711.0 eV) and Fe 2p_{1/2} (724.3–724.4 eV) on $\delta\% WO_x/Fe_2O_3$ catalysts comparing with that on pristine Fe_2O_3 (Fe 2p_{3/2} at 710.8 eV and Fe 2p_{1/2} at 724.1 eV) [38,39]. Interestingly, this effect already reached the limit when the WO_x loading amount was above 5%, which was mainly due to the occurrence of surface convergence of WO_x species without further contacting the surface Fe species. The above-mentioned XPS results well elucidated that the electronic inductive effect between surface W⁶⁺ and Fe³⁺ species was certainly present on WO_x/Fe₂O₃ catalysts through the formation of W–O–Fe bonds, resulting in the generation of W^{(6-δ)+} and Fe^{(3+δ)+} species simultaneously. During this process, the oxidation ability of the surface Fe species was actually enhanced to a certain extent, which was beneficial to the activation of reactants for NH₃-SCR reaction (mainly for NH₃ activation).

3.6. The variation of redox ability induced by WO_x deposition

The NH₃-SCR reaction usually requires a redox cycle of active sites in SCR catalysts to activate the reactants efficiently. Too low redox ability will result in the low deNO_x efficiency, while too high redox ability may lead to unselective oxidation of NH₃ thus resulting in the lack of reducing agents and poor N₂ selectivity. Therefore, an appropriate redox ability of NH₃-SCR catalysts such as the WO_x/Fe₂O₃ catalyst in this study is highly desired, which can be characterized by the H₂-TPR experiments in combination with the *in situ* Fe-K XAFS to determine the phase transformation of Fe species simultaneously.

As shown in Fig. 8, the H_2 -TPR profile of pristine Fe_2O_3 contained two composite peaks, thus the peak deconvolution followed by calculation of H_2 consumption ratios was conducted to better confirm its reduction process (Table 3). According to the calculated area ratios of

Fig. 6. EXAFS spectra of W L_{III}-edge in W-containing samples: (A) Fourier transforms of filtered $k^3 \chi(k)$ into R space, where the dashed lines correspond to the calculated EXAFS results of WO₃ and Fe₂WO₆ in R space using FEFF8.4 code; (B) W L_{III}-edge EXAFS oscillations in 5% WO_x/Fe₂O₃, 10% WO_x/Fe₂O₃ and WO₃ samples in the R range of *ca.* 3.1–3.9 Å, where the dotted lines correspond to the calculated EXAFS oscillations of W–O–W bond in WO₃ using FEFF8.4 code.

Table 2

Semi-quantitative analysis of surface atomic concentrations (% in molar ratio) over $\delta\%$ WO_x/Fe₂O₃ serial catalysts ($\delta = 1, 5, 10$) and Fe₂O₃, WO₃ reference samples derived from XPS data.

Samples	W (%)	Fe (%)	0 (%)	$OH/(O_{\beta} + O_{\alpha} + OH)$ (%)
Fe ₂ O ₃	-	49.0	51.0	6.5
1% WO _x /Fe ₂ O ₃	0.7	47.5	51.8	9.5
5% WO _x /Fe ₂ O ₃	2.9	37.5	59.7	19.1
10% WO _x /Fe ₂ O ₃	4.1	37.1	58.8	14.6
WO ₃	23.3	-	76.7	7.1

Fig. 8. H₂-TPR results of $\delta\%$ WO_x/Fe₂O₃ serial catalysts (δ = 1, 5, 10) and Fe₂O₃, WO₃ reference samples.

the sub-bands at relatively low (I), medium (II) and high (III) temperatures, which was 11.8:21.9:66.3 for pristine Fe₂O₃, the Fe species in this sample probably mainly followed a three-step reduction process: Fe₂O₃ \rightarrow Fe₃O₄ \rightarrow FeO \rightarrow Fe [40–42]. It is interesting to observe that the deposition of only 1% WO_x onto the Fe₂O₃ surface could already delay the reduction process of Fe₂O₃ towards high temperature range, and as we can clearly see this delay effect was much more obvious on 5% and

Fig. 7. XPS results of (A) W 4f, (B) Fe 2p, and (C) O 1 s in $\delta\%$ WO_x/Fe₂O₃ serial catalysts (δ = 1, 5, 10) together with Fe₂O₃, WO₃ reference samples.

Table 3

he calculated area ratios of sub-bands derived from the deconvoluted	H2-TPR profiles of 8% WOx/Fe2O3 serial catalysts	($\delta = 1, 5, 10$) and Fe ₂ O ₃ , WO ₃ reference samples.
--	--	---

Samples	Area ratio I (%)	Area ratio II (%)	Area ratio III (%)	Area ratio IV (%)	Area ratio V (%)	Area ratio VI (%)
Fe ₂ O ₃	I(322 + 349)	II ₄₉₀	III _(570 + 631 + 665)	-	-	-
	11.8	21.9	66.3	-	-	-
1% WO _x /Fe ₂ O ₃	I(342 + 370)	II ₅₀₉	$III_{(609 + 670 + 701)}$	IV525	-	-
	11.1	24.6	62.8	1.4	-	-
5% WOx/Fe2O3	I ₄₇₁	II ₆₁₅	$III_{(706 + 758 + 789 + 806)}$	IV ₅₂₅	-	-
	11.2	24.9	59.4	4.5	-	-
10% WOx/Fe2O3	$I_{(511 + 585)}$	II ₆₄₆	$III_{(711 + 769 + 803 + 822)}$	IV ₅₂₅	-	-
	12.2	21.6	56.8	9.5	-	-
WO ₃	-	-	-	-	$V_{(785 + 830)}$	$VI_{(917 + 946 + 968)}$
-	-	-	-	-	46.9	53.1

10% WO_x/Fe₂O₃ catalysts. Based on the calculated H₂ consumption area ratios of I:II:III which were ca. 1:2:6 for $\delta WO_x/Fe_2O_3$ serial catalysts, it can be concluded that the three-step reduction mechanism was not influenced by the WO_x deposition at all, but the reducibility of Fe species in the bulk phase was actually tuned towards high temperature range. We have already mentioned that the formation of $W^{(6-\delta)+} - O - Fe^{(3+\delta)+}$ on the catalyst surface could result in the enhancement of oxidation ability of the surface Fe species (the reduction of this small portion of surface Fe species cannot be distinguished from H₂-TPR profiles comparing to the larger portion of bulk Fe₂O₃), and we can consider these types of surface Fe species as well dispersed monomeric Fe similar as that in Fe-zeolite materials with high $deNO_x$ efficiency [43,44]. While the catalytic performance of the bulk Fe_2O_3 in NH₃-SCR reaction and NH₃ oxidation was quite similar to the severely clustered Fe_xO_y species in Fe-zeolite materials with high Fe loading or low Fe dispersion degree, which can cause the unselective consumption of reducing agent NH₃ in SCR reaction thus leading to the low deNO_x activity and poor N2 selectivity [43,45,46]. In this study, the simple deposition of WO_x species onto Fe₂O₃ surface could effectively inhibit the over-oxidation ability of bulk Fe₂O₃, which is a quite interesting and important phenomenon for its practical use in NH₃-SCR process. It should be noted that at ca. 525 °C, the deconvoluted peaks with the IV area ratios being 1.4%, 4.5% and 9.5% for 1%, 5% and 10% $WO_x/$ Fe₂O₃ catalysts, respectively, can be also found, which should be due to the reduction of WO_x species on the Fe_2O_3 surface [47,48]. The effective dispersion along with the strong interaction between surface WO_x species and Fe₂O₃ greatly lowered the reduction temperature of WO_x species possibly owing to the formation of W-O-Fe bonds comparing with that of pristine WO₃ (probably following a WO₃ \rightarrow W₂O₅ \rightarrow WO₂ reduction process judging from the area ratios of V:VI), indicating again that the deposition of WO_x onto Fe_2O_3 not only changed the reducibility of Fe₂O₃ but also varied its own reducibility.

To better confirm the phase transformation process of Fe_2O_3 in $\delta\%$ WO_x/Fe₂O₃ serial catalysts during the H₂-TPR experiments, the in situ Fe-K XAFS including XANES and EXAFS were recorded. Comparing with the XAFS results of Fe-containing reference samples (Fig. S3) and judging from the in situ XANES (Fig. S4) and in situ EXAFS (Fig. 9) of Fe-K edge in WO_x/Fe_2O_3 catalysts, the reduction process of Fe_2O_3 can be clearly determined, which indeed followed the three-step procedures as we mentioned above. For pristine Fe₂O₃ sample, the Fe species could be totally converted into Fe₃O₄ at as low as 400 °C, into FeO at 550 °C and finally into metallic Fe at 900 °C. However, for 1% WO_x/Fe₂O₃ catalyst, the Fe_2O_3 could be reduced to Fe_3O_4 at 450 °C and then into FeO at 600 °C, which were ca. 50 °C higher than the corresponding reduction temperatures of pristine Fe₂O₃. For 5% and 10% WO_x/Fe₂O₃ catalysts, it seemed that the delay effect on the reducibility of Fe species induced by WOx deposition have already reached the maximum, and the corresponding reduction temperatures resulting in the transformation of Fe₂O₃ into Fe₃O₄ and then into FeO were delayed to 550 and 700 °C (i.e. ca. 150 °C higher), respectively. These results clearly suggest that the simple deposition of WO_x species onto Fe₂O₃ surface could effectively

adjust the redox ability of Fe_2O_3 especially in the bulk phase, which is in well accordance with the conclusions drawn from the H₂-TPR profiles. In the activity test over 5% WO_x/Fe₂O₃ catalyst, the NO_x conversion can maintain above 80% from 300 to 450 °C, and in this temperature range the active Fe sites should have an appropriate redox cycle between Fe³⁺ \leftrightarrow Fe²⁺ species during the NH₃-SCR reaction. The proper deposition of WO_x onto Fe₂O₃ effectively created such a circumstance through the formation of W–O–Fe species together with the tuning of the reducibility of bulk Fe₂O₃, which is an important reason for the significant promotion of NH₃-SCR performance.

3.7. The variation of NH₃/NO adsorption ability and oxidation activity induced by WO_x deposition

The NH₃/NO adsorption and oxidation behaviors are important processes in the NH₃-SCR reaction. Therefore, the influence of WO_x deposition onto Fe₂O₃ surface on these processes was investigated in detail using *in situ* DRIFTS and activity test methods, and the results are shown in Figs. 10 and 11, respectively.

As shown in Fig. 10A, after NH₃ adsorption and N₂ purge, the infrared bands characteristics of NH₃ adsorbed species over pristine Fe₂O₃ were observed, including the NH4+ species on Brønsted acid sites at 1684 and 1439 cm⁻¹ due to the δ_s and δ_{as} vibration modes, respectively [49-53], and the coordinated NH₃ species on Lewis acid sites at 1606 and 1192 cm^{-1} due to the δ_{as} and δ_{s} vibration modes, respectively [17,49,54,55]. Besides, some overlapped IR bands in the range of 1350–1380 cm^{-1} can also be observed, and the assignment of these species was quite complicated and diverse as described in previous studies. For example, some researchers assigned these bands to coordinated NH₃ with asymmetric bending vibration mode [56], and others ascribed them to amide (-NH₂) species with wagging vibration mode in hydrazine (which resulted from the dehydrogenation of NH₃ following by dimerization) [49,57,58] or to the highly oxidized species such as nitrates or nitrites [54]. However, in this study, based on the reactivity examination of these surface species in the subsequent Section 3.8 during the various transient reaction conditions also using the in situ DRIFTS method, these overlapped bands can actually be assigned to the ionic NH₄⁺ species with different bending vibration modes from that of the common NH_4^+ species as detected at 1684 and 1439 cm⁻¹ [59-63]. It has been reported that the feature of these species was generated by the difference in NH₄⁺ symmetry resulting from the different hydrogen bonds with the neighboring oxygen atoms or NH₃ molecules [62,64,65]. Overall, it should be noted that the amount of NH3 adsorbed species on Lewis acid sites was much higher than that on Brønsted acid sites, and the N-H stretching vibration bands at 3122, 3223, 3336 and 3390 cm^{-1} also confirmed the dominant presence of coordinated NH₃ on Fe₂O₃ surface [49,66]. These results are in good accordance with the conclusions drawn by Ramis et al. [54,67] that the Fe₂O₃ material does not carry enough Brønsted acidity. The coordinated NH₃ on Lewis acid sites of Fe₂O₃ could undergo the hydrogen abstraction process to form -NH2 species with the scissoring vibration

Fig. 9. In situ EXAFS spectra of Fe K-edge in (A) Fe₂O₃, (B) 1% WO_x/Fe₂O₃, (C) 5% WO_x/Fe₂O₃ and (D) 10% WO_x/Fe₂O₃ during the reduction process by H₂.

mode detected at 1516 cm⁻¹ [49,68,69], and the formed $-NH_2$ species could react with gaseous NO to form NH_2NO and then decompose to N_2 and H_2O contributing to the total SCR reaction. This is possibly the reason for the SCR activity achieved on pristine Fe₂O₃, although the operation temperature window was rather narrow. Over the 1% $WO_x/$ Fe₂O₃ catalyst, after the NH_3 adsorption and N_2 purge, the NH_4^+ species showed some decrease to a certain extent possibly due to the occupation of some Brønsted acid sites by WO_x on Fe₂O₃; and at the same time, the band ascribed to coordinated NH_3 species (1188 cm⁻¹) broadened to a certain extent, indicating that the induced WO_x species could also act as extra Lewis acid sites in the form of W=O for NH_3 adsorption. When the WO_x deposition amount onto Fe₂O₃ surface was

increased to 5%, the adsorption amount of ionic NH₄⁺ species (3026, 1676, 1425, 1383 cm⁻¹) was greatly promoted suggesting that the oligomeric WO_x species on Fe₂O₃ surface could supply abundant Brønsted acid sites in the form of W–OH for NH₃ adsorption; the obvious consumption bands of surface acidic hydroxyls at 3724 and 3647 cm⁻¹ with stretching vibration modes [70] and around 1011 cm⁻¹ with deformation vibration modes [71] can also clearly prove this point of view. And meanwhile, the adsorption of coordinated NH₃ species on Lewis acid sites was also rich owing to the increase of W=O site numbers. It should be noted that the band owing to the -NH₂ species at 1529 cm⁻¹ [49] can also be observed on the 5% WO_x/ Fe₂O₃ catalyst, implying that the activation process of coordinated NH₃

Fig. 10. In situ DRIFTS results (A) NH₃ adsorption and (B) NO_x adsorption at 200 °C over δ % WO_x/Fe₂O₃ serial catalysts (δ = 0, 1, 5, 10).

species was not severely inhibited by the deposited WO_x species. In another word, the deposited WO_x species played an important role as efficient NH₃ storage reservoir, and the enhanced oxidation ability of Fe species in surface $W^{(6-\delta)+}-O-Fe^{(3+\delta)+}$ structure resulted in the easy activation of adsorbed NH₃ species, which is beneficial to the total SCR reaction. However, with relatively higher WO_x deposition amount on Fe₂O₃ surface such as 10%, both the ionic NH₄⁺ and coordinated NH₃ species even showed some slight decrease in intensity, mainly due to the aggregation and structural transformation of WO_x species resulting in the decrease of exposed W–OH and W=O sites. Therefore, the proper deposition amount of WO_x species on Fe₂O₃ surface (*i.e.* 5%) is very important to keep the abundance and balance of acid sites on the catalyst surface leading to the highest NH₃-SCR performance.

Fig. 10B shows the influence of WO_x deposition amount on the NO_x adsorption ability of WO_x/Fe₂O₃ catalysts. As we can clearly see, after NO + O₂ adsorption and N₂ purge, the infrared bands attributed to monodentate nitrate (1560 and 1234 cm^{-1}), bidentate nitrate (1578 cm⁻¹), bridging nitrate (1605 and 1219 cm^{-1}) [69,72–74] and

cis-(N₂O₂)^{2⁻} species (1014 cm⁻¹) [68,75–77] showed up on pristine Fe₂O₃ surface, together with the consumption bands of surface basic hydroxyls at 3768 and 3683 cm⁻¹ [70,78] and the H₂O formation band at 3581 cm⁻¹ with O–H stretching vibration mode [79]. It is quite obvious that even with only 1% WO_x deposition amount on the Fe₂O₃ surface, the NO_x adsorption ability was severely inhibited to a certain extent which can be verified by the apparent decrease of IR band intensities. Over the optimal 5% WO_x/Fe₂O₃ catalyst, only a rather small quantity of monodentate nitrate and bridging nitrate can be observed on the surface, and over the 10% WO_x/Fe₂O₃ catalyst the NO_x adsorption was even totally suppressed. These results clearly indicate that the deposited acidic WO_x species can greatly hinder the adsorption of NO_x on the Fe₂O₃ surface, and gaseous NO or NO₂ may directly participate into the NH₃-SCR process reacting with NH₃ adsorbed species mainly through an Eley-Rideal (E-R) pathway.

Fig. 11A shows the separate NH₃ oxidation results over WO_x/Fe_2O_3 serial catalysts, from which we can clearly see that the NH₃ oxidation ability of Fe_2O_3 was obviously inhibited to a certain extent

Fig. 11. (A) Separate NH₃ oxidation activity and (B) separate NO oxidation activity as a function of reaction temperature over δ % WO_x/Fe₂O₃ serial catalysts (δ = 0, 1, 5, 10).

monotonically as a function of WOx surface deposition amount, although the NH₃ adsorption capacity (especially as ionic NH₄⁺ species) of the WO_x modified samples was actually increased (Fig. 10A). This means that more NH₃ adsorbed species could be reserved on the WO_x/ Fe₂O₃ catalyst surface acting as reducing agents for the deNO_x process, and at the same time the over-oxidation or the unselective catalytic oxidation of NH₃ was greatly suppressed, which are quite beneficial to the improvement of NH3-SCR activity and N2 selectivity simultaneously. In good accordance with the in situ DRIFTS results of NOx adsorption, as shown in Fig. 11B, the separate NO oxidation ability of the $\delta\%$ WO_x/Fe₂O₃ serial catalysts was also decreased monotonically with the increasing of WO_x deposition amount. Especially, for the 10% WO_x/Fe₂O₂ catalyst, its NO oxidation ability was totally inhibited, yet it still showed considerable NH₃-SCR activity in the medium temperature range (Fig. 1), which indicates again that over the WO_x modified Fe_2O_3 catalyst the NO can directly participate in the NH₃-SCR reaction in gas phase with no necessity to adsorb onto catalyst surface as nitrites or nitrates. In short summary, not only the NH₃ oxidation ability but also the NO oxidation ability of Fe₂O₃ was greatly lowered by the surface deposited WO_x species due to the significant modification of Fe_2O_3 reducibility as concluded above in Section 3.6. It should be noted that, from XPS study, we concluded that the surface Fe species actually showed increased oxidation ability due to the electronic inductive effect in $W^{(6-\delta)+}$ and $Fe^{(3+\delta)+}$ structure, which is beneficial for NH_3 dehydrogenation/activation to form -NH2 intermediate. In separate NH3 oxidation reaction, the surface Fe sites on WO_x/Fe₂O₃ was much less than that on Fe₂O₃ due to WO_x coverage, and the over-oxidation of NH₃ by bulk Fe₂O₃ was also decreased through WO_x modification, thus the overall NH₃ oxidation was actually decreased. Similarly, for separate NO oxidation reaction, NO could not adsorb onto WO_x/Fe₂O₃ surface at all (also with much less surface Fe sites), thus the NO oxidation activity of WO_x/Fe_2O_3 catalyst was also decreased. This explains the seemingly controversial but reasonable conclusions drawn from XPS and NH₂/NO oxidation results.

3.8. NH_3 -SCR reaction mechanism over WO_x/Fe_2O_3 catalyst

To further elucidate the NH₃-SCR reaction mechanism over the optimal 5% WO_x/Fe₂O₃ catalyst, the *in situ* DRIFTS experiments including the reaction between NO + O₂ and pre-adsorbed NH₃ species, the reaction between NH₃ and pre-adsorbed NO_x species, and also the reaction under NH₃ + NO + O₂ atmosphere were carefully conducted in comparison with those on pristine Fe₂O₃, and the results are shown in Figs. 12 and 13.

As shown in Fig. 12A, after NH₃ adsorption and N₂ purge over pristine Fe₂O₃, both the ionic NH₄⁺ species and coordinated NH₃ species appeared on the surface. However, after the introduction of $NO + O_2$, only the coordinated NH_3 species on Lewis acid sites (1606 and 1192 cm^{-1}) disappeared rapidly due to the reaction with NO_x to form N_2 and $H_2O\ (1597\,\text{cm}^{-1},$ which is ascribed to adsorbed H_2O possibly in monomer form) [26,80,81], and at the same time the Fe₂O₃ surface was gradually and dominantly covered by nitrate species (1605, 1578, 1558, 1244, 1219 cm⁻¹) and *cis*-(N₂O₂)²⁻ species (1014 cm⁻¹). Even after 60 min reaction, the ionic NH_4^+ species on Brønsted acid sites (1450 and 1352 cm⁻¹) was still present on Fe₂O₃ surface, indicating that the surface acidic hydroxyls bonding to Fe₂O₃ could not contribute to the NH3-SCR reaction at all. As we discussed above, as shown in Fig. 12B, after NO + O_2 adsorption and N_2 purge, the nitrate species (1605, 1578, 1558, 1244, 1219 cm⁻¹), *cis*-(N₂O₂)²⁻ species (1014 cm^{-1}) and adsorbed H₂O (3581 cm^{-1}) showed up on Fe₂O₃ surface, and after the introduction of NH₃ the surface species became more complicated. The introduced NH3 not only could adsorb onto the $\mathrm{Fe_2O_3}$ surface as ionic $\mathrm{NH_4}^+$ (1676, 1439, 1356 $\mathrm{cm^{-1}})$ and coordinated NH_3 (1192 cm⁻¹) but also could react with pre-adsorbed NO_x to form surface ammonium nitrate (NH₄NO₃) at 1524, 1281 and 1250 cm⁻¹ [27] along with the obvious formation of adsorbed H₂O in monomer

Fig. 12. In situ DRIFTS of (A) reaction between NO + O_2 and pre-adsorbed NH₃ species, (B) reaction between NH₃ and pre-adsorbed NO_x species, and (C) reaction in NH₃ + NO + O_2 at 200 °C over pristine Fe₂O₃.

form at 1597 cm⁻¹ [26,80,81] and H₂O clusters with hydrogen bonding at 3537 cm⁻¹ [26,81,82]. Under the NH₃-SCR reaction condition, as shown in Fig. 12C, the surface NH₄NO₃ species was also obviously detected on Fe₂O₃ surface with a relatively high deposition amount. Over some Mn-containing NH₃-SCR catalysts in our previous study [27,83], the surface NH₄NO₃ species played an important role as reactive intermediate for the deNO_x process especially at low temperatures. However, over this pristine Fe₂O₃ sample, the surface deposited NH₄NO₃ seemed to only act as an inhibitor in the NH₃-SCR reaction possibly because it lacked the catalytic function to promote the reactivity of NH₄NO₃ with NO. It should be noted that only at the beginning of NH₃-SCR reaction (1–3 min) the coordinated NH₃ species could be detected on Fe₂O₃ surface (1194 cm⁻¹), and afterwards the ionic NH₄⁺ species (1676, 1450 and 1354 cm⁻¹) and NH₄NO₃ species were steadily present, indicating again that only the Lewis acid sites on

Fig. 13. In situ DRIFTS of (A) reaction between NO + O_2 and pre-adsorbed NH₃ species, (B) reaction between NH₃ and pre-adsorbed NO_x species, and (C) reaction in NH₃ + NO + O_2 at 200 °C over 5% WO_x/Fe₂O₃.

 Fe_2O_3 took part in the NH₃-SCR reaction thus showing low deNO_x performance and relatively narrow operation temperature window.

As for the optimal 5% WO_x/Fe₂O₃ catalyst, after NH₃ adsorption and N₂ purge (Fig. 13A), both ionic NH₄⁺ species and coordinated NH₃ species showed up as usual on surface. Interestingly, after the introduction of NO + O₂, not only the coordinated NH₃ species (1610, 1223 cm⁻¹) plus the amide species (1529 cm⁻¹), but also the ionic NH₄⁺ species (1676, 1425, 1383 cm⁻¹) showed obvious decrease in intensity, indicating their participation into the deNO_x process. The gradual recovery of the acidic hydroxyl consumption band at 1011 cm⁻¹ could also verify the reactivity of ionic NH₄⁺ on W–OH sites towards NO. With the increasing of reaction time, a small quantity of nitrate species (1603, 1572 and 1271 cm⁻¹) appeared on the catalyst surface, and surprisingly, some ionic NH₄⁺ adsorbed on Fe-OH sites (3223, 1439 and 1350 cm⁻¹) could still remain there as spectator. The above-mentioned results clearly imply that only the coordinated NH₃ species on W=O and Fe=O sites and the ionic NH4⁺ species on W-OH sites could contribute to the NH₃-SCR reaction, while the ionic NH₄⁺ species on Fe-OH sites was totally inactive in this process. Owing to the severe inhibition of NO_x adsorption by the deposited WO_x species on Fe₂O₃ surface, as shown in Fig. 13B, only a small amount of bridging nitrates (1603 cm⁻¹) and monodentate nitrates (1566 and 1273 cm⁻¹) could be observed after NO + O2 adsorption and N2 purge. The following introduction of NH₃ resulted in the apparent coverage of catalyst surface by ionic NH₄⁺ and coordinated NH₃, and at the same time partial bridging nitrates probably transformed into monodentate nitrates (1560 cm⁻¹) due to the disturbance by adsorbed NH₃ species. It is noteworthy that no surface NH4NO3 species was detected in this process at all, which was quite different from that on pristine Fe₂O₃. Furthermore, under the NH₃-SCR reaction atmosphere on 5% WO_x/ Fe₂O₃ catalyst, as presented in Fig. 13C, the deposition amount of surface NH₄NO₃ (1288 and 1248 cm⁻¹) was also much lower than that on pristine Fe₂O₃, indicating that the inhibition effect of surface NH₄NO₃ species on the deNO_x performance was actually greatly lowered on the WO_x promoted catalyst. Besides, for the first 15 min reaction, there seemed to be some transformation of bridging nitrates to monodentate nitrates also, and under the steady state reaction condition (60 min) the catalyst surface was dominantly covered by NH₃ adsorbed species again. Therefore, it can be concluded that the NH₃-SCR reaction over this 5% WO_x/Fe_2O_3 catalyst mainly proceeded through an E-R reaction pathway during which the gaseous NO could directly react with active NH₃ adsorbed species, and this was also the main reason for its high SO₂ durability because NO_r did not need to adsorbed onto the catalyst surface competitively as nitrates or nitrites.

4. Conclusions

Using conventional impregnation method, a series of $\delta\%$ WO_x/ Fe₂O₃ catalysts ($\delta = 1, 5, 10$ by weight) were prepared, among which 5% WO_x/Fe₂O₃ catalyst showed the highest NH₃-SCR performance and excellent N₂ selectivity plus SO₂ resistance. The bulk structure of Fe₂O₃ was not influenced by WO_x deposition, and the WO_x species in highly unsaturated coordination state mainly acted as an effective surface modifier. This simple surface modification process increased the oxidation ability of surface $Fe^{(3+\delta)+}$ species through electronic inductive effect in W-O-Fe bonds, suppressed the over-oxidation of NH₃ on bulk Fe₂O₃ to enhance the N₂ selectivity, and supplied abundant surface reactive Lewis and Brønsted acid sites for NH3 adsorption and thus resulted in easy activation of adsorbed NH₃ species on neighboring surface $Fe^{(3+\delta)^+}$ sites with enhanced oxidation ability. Based on the detailed in situ DRIFTS study, the E-R reaction pathway between gaseous NO and active NH₃ adsorbed species was dominant over this WO_r promoted Fe₂O₃ catalyst, which was the main reason for its high SO₂ durability. The surface modification of Fe₂O₃ by WO_x deposition is an efficient way to improve the NH3-SCR activity and N2 selectivity through the tuning of redox ability and surface acidity simultaneously, which may also be applicable to other materials (V₂O₅, Cr₂O₃, MnO_x, CuO, CeO₂, Nb₂O₅ etc.) in the deNO_x area.

Acknowledgements

We sincerely thank Prof. Kiyotaka Asakura from Institute for Catalysis, Hokkaido University for so much help in the *in situ* XAFS measurement. The authors would like to thank Dr. Shuo Zhang, Zheng Jian g and Yuying Huang from BL14W1 beamline, Shanghai Synchrotron Radiation Facility (SSRF), and Dr. Lirong Zheng from 1W1B beamline, Beijing Synchrotron Radiation Facility (BSRF), for the help in the *ex situ* XAFS measurement. The authors also greatly appreciate the help from Dr. Lijuan Xie, Dr. Weiwei Yang and Mr. Shipeng Ding for catalyst testing and characterization. This work was supported by the National Key R&D Program of China (2017YFC0211101,

2017YFC0211105, and 2017YFC0212502), the Key Project of National Natural Science Foundation of China (21637005), and the Photon Factory, IMSS-KEK, Japan (Project No. 2012G537).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.02.052.

References

- [1] V.I. Pavulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233.
- [2] Z. Liu, S. Ihl Woo, Catal. Rev. 48 (2006) 43.
- [3] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18 (1998) 1.
- [4] M. Koebel, M. Elsener, M. Kleemann, Catal. Today 59 (2000) 335.
- [5] W. Shan, H. Song, Catal. Sci. Technol. 5 (2015) 4280.
- [6] F. Liu, Y. Yu, H. He, Chem. Commun. 50 (2014) 8445.
- [7] K.J. Lee, P.A. Kumar, M.S. Maqbool, K.N. Rao, K.H. Song, H.P. Ha, Appl. Catal. B 142–143 (2013) 705.
- [8] P. Granger, V.I. Parvulescu, Chem. Rev. 111 (2011) 3155.
- [9] R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 121 (1999) 5595.
- [10] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, J. Catal. 275 (2010) 187.
- [11] L. Ren, L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng, F.-S. Xiao, Chem. Commun. 47 (2011) 9789.
- [12] W. Shan, F. Liu, Y. Yu, H. He, C. Deng, X. Zi, Catal. Commun. 59 (2015) 226.
- [13] Y. Peng, J. Li, L. Chen, J. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol. 46 (2012) 2864.
- [14] W. Shan, F. Liu, Y. Yu, H. He, Chin. J. Catal. 35 (2014) 1251.
- [15] P. Li, Y. Xin, Q. Li, Z. Wang, Z. Zhang, L. Zheng, Environ. Sci. Technol. 46 (2012) 9600.
- [16] X. Mou, B. Zhang, Y. Li, L. Yao, X. Wei, D.S. Su, W. Shen, Angew. Chem. Int. Ed. 51 (2012) 2989.
- [17] N. Apostolescu, B. Geiger, K. Hizbullah, M.T. Jan, S. Kureti, D. Reichert, F. Schott, W. Weisweiler, Appl. Catal. B 62 (2006) 104.
- [18] F. Liu, H. He, C. Zhang, Chem. Commun. (2008) 2043.
- [19] J.P. Chen, M.C. Hausladen, R.T. Yang, J. Catal. 151 (1995) 135.
- [20] S. Yang, J. Li, C. Wang, J. Chen, L. Ma, H. Chang, L. Chen, Y. Peng, N. Yan, Appl. Catal. B 117–118 (2012) 73.
- [21] P. Fabrizioli, T. Bürgi, A. Baiker, J. Catal. 206 (2002) 143.
- [22] H. Teng, L.-Y. Hsu, Y.-C. Lai, Environ. Sci. Technol. 35 (2001) 2369.
- [23] G. Marbán, A.B. Fuertes, Catal. Lett. 84 (2002) 13.
- [24] L. Chen, J. Li, W. Ablikim, J. Wang, H. Chang, L. Ma, J. Xu, M. Ge, H. Arandiyan, Catal. Lett. 141 (2011) 1859.
- [25] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Chem. Commun. 47 (2011) 8046.
- [26] B.A. Kolesov, C.A. Geiger, Am. Mineral. 91 (2006) 1039.
- [27] F. Liu, H. He, Catal. Today 153 (2010) 70.
- [28] J.W. Cook, D.E. Sayers, J. Appl. Phys. 52 (1981) 5024.
- [29] A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Phys. Rev. B 58 (1998) 7565.
- [30] S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys. Chem. C 112 (2008) 6869.
 [31] F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie, T. Hu, Appl. Catal. B 96 (2010)
- 408.
- [32] F. Liu, K. Asakura, P. Xie, J. Wang, H. He, Catal. Today 201 (2013) 131.
- [33] F. Liu, H. He, Z. Lian, W. Shan, L. Xie, K. Asakura, W. Yang, H. Deng, J. Catal. 307 (2013) 340.
- [34] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Appl. Surf. Sci. 253 (2007) 8952.

- [35] X. Li, X. Li, J. Li, J. Hao, Chem. Eng. J. 317 (2017) 70.
- [36] Z. Liu, Y. Liu, Y. Li, H. Su, L. Ma, Chem. Eng. J. 283 (2016) 1044.
- [37] Z. Feng, C.-Y. Kim, J.W. Elam, Q. Ma, Z. Zhang, M.J. Bedzyk, J. Am. Chem. Soc. 131 (2009) 18200.
- [38] L.J. France, Q. Yang, W. Li, Z. Chen, J. Guang, D. Guo, L. Wang, X. Li, Appl. Catal. B 206 (2017) 203.
- [39] S. Shwan, J. Jansson, L. Olsson, M. Skoglundh, Appl. Catal. B 166–167 (2015) 277.
- [40] J. Cao, Y. Wang, X. Yu, S. Wang, S. Wu, Z. Yuan, Appl. Catal. B 79 (2008) 26.
- [41] M. Liang, W. Kang, K. Xie, J. Nat. Gas Chem. 18 (2009) 110.
- [42] W. Qian, Y. Su, X. Yang, M. Yuan, W. Deng, B. Zhao, J. Fuel Chem. Technol. 45 (2017) 1499.
- [43] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Appl. Catal. B 95 (2010) 348.
- [44] M. Høj, M.J. Beier, J.-D. Grunwaldt, S. Dahl, Appl. Catal. B 93 (2009) 166.
- [45] M. Schwidder, M. Santhosh Kumar, A. Bruckner, W. Grunert, Chem. Commun. (2005) 805.
- [46] M. Devadas, O. Kröcher, M. Elsener, A. Wokaun, G. Mitrikas, N. Söger, M. Pfeifer, Y. Demel, L. Mussmann, Catal. Today 119 (2007) 137.
- [47] X.-R. Chen, C.-L. Chen, N.-P. Xu, C.-Y. Mou, Catal. Today 93-95 (129) (2004).
- [48] Q. Zhao, S.-L. Chen, J. Gao, C. Xu, Transit. Metal Chem. 34 (2009) 621.
- [49] G. Ramis, L. Yi, G. Busca, Catal. Today 28 (1996) 373.
- [50] L. Ma, J. Li, R. Ke, L. Fu, J. Phys. Chem. C 115 (2011) 7603.
- [51] L. Chen, J. Li, M. Ge, Environ. Sci. Technol. 44 (2010) 9590.
- [52] Z. Wu, B. Jiang, Y. Liu, H. Wang, R. Jin, Environ. Sci. Technol. 41 (2007) 5812.
- [53] R.Q. Long, R.T. Yang, J. Catal. 186 (1999) 254.
- [54] G. Ramis, M.A. Larrubia, G. Busca, Top. Catal. 11 (2000) 161.
- [55] Z. Si, D. Weng, X. Wu, J. Li, G. Li, J. Catal. 271 (2010) 43.
- [56] H.-H. Zhao, G.-Y. Xie, Z.-Y. Liu, Y.-Z. Liu, Acta Chim. Sinica 66 (2008) 1021.
- [57] J.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B 13 (1997) 45.
- [58] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal. 157 (1995) 523.
- [59] K. Suzuki, T. Noda, N. Katada, M. Niwa, J. Catal. 250 (2007) 151.
- [60] K. Suzuki, Y. Aoyagi, N. Katada, M. Choi, R. Ryoo, M. Niwa, Catal. Today 132 (2008) 38.
- [61] T. Noda, K. Suzuki, N. Katada, M. Niwa, J. Catal. 259 (2008) 203.
- [62] K. Suzuki, N. Katada, M. Niwa, J. Phys. Chem. C 111 (2007) 894.
- [63] K. Suzuki, G. Sastre, N. Katada, M. Niwa, Phys. Chem. Chem. Phys. 9 (2007) 5980.
- [64] F. Lónyi, J. Valyon, Microporous Mesoporous Mater. 47 (2001) 293.
- [65] W.L. Earl, P.O. Fritz, A.A.V. Gibson, J.H. Lunsford, J. Phys. Chem. 91 (1987) 2091.
- [66] N.-Y. Topsøe, Science 265 (1994) 1217.
- [67] M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 30 (2001) 101.
- [68] L. Chen, J. Li, M. Ge, L. Ma, H. Chang, Chin. J. Catal. 32 (2011) 836.
- [69] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 219.
- [70] F. Liu, H. He, C. Zhang, W. Shan, X. Shi, Catal. Today 175 (2011) 18.
- [71] J.D. Russell, Clay Miner. 14 (1979) 109.
- [72] Z. Liu, P.J. Millington, J.E. Bailie, R.R. Rajaram, J.A. Anderson, Microporous Mesoporous Mater. 104 (2007) 159.
- [73] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 208.
- [74] G.M. Underwood, T.M. Miller, V.H. Grassian, J. Phys. Chem. A 103 (1999) 6184.
- [75] A. Martinez-Arias, J. Soria, J.C. Conesa, X.L. Seoane, A. Arcoya, R. Cataluna, J. Chem. Soc. Faraday Trans. 91 (1995) 1679.
- [76] K.I. Hadiiiyanov, Catal. Rev. 42 (2000) 71.
- [77] G. Qi, R.T. Yang, R. Chang, Appl. Catal. B 51 (2004) 93.
- [78] G. Piazzesi, M. Elsener, O. Krocher, A. Wokaun, Appl. Catal. B 65 (2006) 169.
- [79] W. Xu, C.T. Johnston, P. Parker, S.F. Agnew, Clays Clay Miner. 48 (2000) 120.
- [80] R.L. Frost, Spectrochim. Acta A 60 (2004) 1469.
- [81] A. Hodgson, S. Haq, Surf. Sci. Rep. 64 (2009) 381.
- [82] A. Destainville, E. Champion, D. Bernache-Assollant, E. Laborde, Mater. Chem. Phys. 80 (2003) 269.
- [83] F. Liu, W. Shan, Z. Lian, L. Xie, W. Yang, H. He, Catal. Sci. Technol. 3 (2013) 2699.