

焙烧程序对一步合成 Cu-SSZ-13 催化剂 NH₃-SCR 性能的影响

谢利娟^{1,2},刘福东²,石晓燕²,贺泓²

(¹江南大学环境与土木工程学院,江苏无锡 214122;²中国科学院生态环境研究中心,北京 100085)

摘要: 焙烧程序影响一步合成法制备 Cu-SSZ-13 催化剂中 Cu 物种的种类及分布,是影响催化剂在 NH₃选择性催 化还原(NH₃-SCR)氮氧化物反应中催化性能的重要因素。为研究焙烧程序对该方法制备 Cu-SSZ-13 催化剂性 能的影响,采用不同的焙烧温度及升温速率制备 Cu-SSZ-13 催化剂,并考察各催化剂的催化活性、水热稳定性 及活性物种形态。结果表明焙烧温度不改变催化剂的晶型结构,但影响催化剂的活性物种形态及稳定性。当焙 烧温度为 600℃时,催化剂中 Cu 物种全部为孤立的 Cu²⁺,并具有极高的稳定性,催化剂具有最佳的活性及水热 稳定性。固定焙烧温度为 600℃,随升温速率的提高,催化剂活性及水热稳定性表现出下降趋势,考虑经济成本, 最佳的升温速率应为 1℃/min。因此,以 1℃/min 的升温速率升至 600℃焙烧 6h 是一步合成法制备 Cu-SSZ-13 催 化剂的最佳焙烧程序,所得催化剂具备优异的 NH₃-SCR 活性和水热稳定性。

关键词:选择催化还原;分子筛;催化;Cu-SSZ-13;焙烧程序

中图分类号:TB 34 文献标志码:A 文章编号:1000-6613(2016)08-2464-05 **DOI**:10.16085/j.issn.1000-6613.2016.08.24

Influence of calcination procedure on the one-pot synthesized Cu-SSZ-13 catalysts and their performance in NH₃-SCR

XIE Lijuan^{1,2}, LIU Fudong², SHI Xiaoyan², HE Hong²

(¹School of Environment and Civil Engineering ,Jiangnan University ,Wuxi 214122 ,Jiangsu ,China ;²Research Center for Eco-environmental Science , Chinese Academy of Sciences , Beijing 100085 , China)

Abstract : The calcination procedures affected the state and the distribution of Cu species in the one-pot synthesized Cu-SSZ-13 , which then influenced their catalytic performance greatly. In order to investigate the effect of calcination procedure on the Cu-SSZ-13 in the selective catalytic reduction of NO_x by ammonia (NH₃-SCR), we prepared the catalysts with different temperatures and ramp rates. The catalytic activity and hydrothermal stability and state of active species of the catalysts were tested. The calcination temperature did not change the structure of the catalyst , but affected the state and the stability of the active species. When the temperature was set at 600 , all Cu species in the catalyst were isolated Cu²⁺ with excellent stability , and the catalyst showed the best catalytic performance and hydrothermal stability. When the temperature was fixed at 600 , the activity and hydrothermal stability of the catalysts decreased with the increase of ramp rate. Considering the cost , we had better set the ramp rate as 1 /min. Thus , the optimal procedure was to calcine sample at 600 for 6h with a ramp rate of 1 /min , and the catalyst showed the best NH₃-SCR activity and the highest hydrothermal stability.

Key words : selective catalytic reduction (SCR); molecular sieves; catalysis ; Cu-SSZ-13 ; calcination procedures

第一作者及联系人:谢利娟(1985—),女,博士,讲师,从事机动车 尾气催化净化方面的研究。E-mail ljxie@jiangnan.edu.cn。

收稿日期:2015-10-29;修改稿日期:2016-01-15。

基金项目:国家自然科学基金项目(51278486,51508231)。

NH₃选择性催化还原 NO_x 技术 (NH₃-SCR) 是 目前柴油车尾气 NO_x 催化净化最有效的技术之 一^[1]。近年来,柴油车尾气污染物排放标准逐步提 高,对 NH₃-SCR 后处理系统的净化效率提出更高的 要求^[2-3]。应用于柴油车尾气 NO_x 净化的 NH₃-SCR 催化剂不仅需要具备优异的催化活性,还需具有良 好的水热稳定性^[4-5]。

近年来,具有 CHA 结构的 Cu 基小孔分子筛催 化剂(Cu-SSZ-13)引起学者们的广泛关注,主要 原因是该催化剂具有非常优异的 NH₃-SCR 催化活 性和水热稳定性^[6-8]。由于具备小孔结构,该催化剂 也具有良好的抗 C₃H₆等小分子碳氢化合物中毒的 能力^[9-10],这在实际推广应用中具有重要意义。该 催化剂的合成方法主要有两种:离子交换法^[11-12]和 一步合成法^[13-15]。REN 等^[14]开发出铜胺络合剂 (Cu-TEPA)为新型模板剂,可有效制备 Cu-SSZ-13 分子筛样品。相比离子交换法,该合成方法不仅节 省了合成步骤,而且降低了催化剂的合成成本。更 重要的是,一步合成法制备的 Cu-SSZ-13 催化剂表 现出优异的催化性能,使之成为目前的研究 热点^[16-17]。

一步合成法制备的 Cu-SSZ-13 初始样品中, Cu-TEPA 以模板剂的形式完整地存在于分子筛孔 道中。焙烧过程去除有机物 TEPA 的同时,也改变 了 Cu 物种的分布^[18]。不同 Cu 物种的分布是影响催 化剂催化活性的重要因素^[19-22]。因此,焙烧程序可 通过影响催化剂中活性物种的分布,进而影响催化 剂的催化活性。本文以一步合成法制备 Cu-SSZ-13 初始样品为基础,研究焙烧温度和升温程序对催化 剂催化活性和水热稳定性的影响,用以优化该催化 剂的最佳焙烧程序。

1 实验部分

1.1 催化剂制备

(1)改良一步合成法制备 Cu-SSZ-13 初始样品 参照已报道一步合成法^[14]制备 Cu-SSZ-13 初始样品 的具体步骤,降低配方中 Cu-TEPA 的用量为原来的 2/3,即合成凝胶比例调整为 14.8Na₂O 3.0Al₂O₃ 600H₂O 30SiO₂ 4Cu-TEPA,获得所需 Cu-SSZ-13 初始样品。

(2)稀硝酸后处理 将 0.5g 上述 Cu-SSZ-13 初 始样品加入 100mL pH=1 的稀硝酸溶液中,在 80 水浴条件下处理 12h。经充分洗涤后,在 100 下干 燥 12h。 (3) 不同焙烧程序制备 Cu-SSZ-13 催化剂 将 稀硝酸处理后的 Cu-SSZ-13 样品在不同焙烧温度 (550、600、700和800)下焙烧 6h,制备 不同焙烧温度下的 Cu-SSZ-13 催化剂。优化过焙烧 温度后,改变焙烧程序中的升温速率(0.5/min、 1/min、5/min 和10/min),制备不同升温速率 下的 Cu-SSZ-13 催化剂。

(4)水热老化样品 不同焙烧程序制备的催化 剂在含10% H₂O 的空气气氛中在750 温度下水热 老化16h,制备老化催化剂。所有新鲜和老化催化 剂均以焙烧温度和升温速率区分命名。

1.2 催化剂评价和表征

1.2.1 催化剂评价

所有催化剂经压片、过筛后,取 40~60 目催 化剂进行活性评价。NH₃-SCR 反应气氛为: 500µL/L NO,500 µL/L NH₃,5% O₂(体积分数), N₂为平衡气,气体总流量为 500mL/min。催化剂 用量为 50mg,反应空速为 400000h⁻¹。NO、NH₃、 N₂O 和 NO₂的浓度均由配有 2m 光程气体池的傅 里叶变换红外光谱仪(Nicolet Nexus 670)测得。 NH₃-SCR 反应中的 NO_x转化率采用公式(1)进行 计算。

$$NO_{x} \mathbf{i} \mathbb{K} \mathbf{E} = \left(1 - \frac{[NO]_{\underline{\mathtt{H}}\underline{\mathtt{D}}} + [NO_{2}]_{\underline{\mathtt{H}}\underline{\mathtt{D}}}}{[NO]_{\underline{\mathtt{A}}\underline{\mathtt{D}}} + [NO_{2}]_{\underline{\mathtt{A}}\underline{\mathtt{D}}}}\right) \times 100\% \quad (1)$$

1.2.2 催化剂表征

(1)热重(TG) 该实验在热重分析仪
(TGA/DSC1/1600)上进行,将Cu-SSZ-13初始样
品(约 30mg)在空气气氛下以10 /min 的升温速率升至1000,记录该过程中催化剂的质量变化。

(2) H_2 程序升温(H_2 -TPR) 该实验在化学 吸附仪(Micromeritics AutoChem 2920)上进行,首 先将 50mg 样品在体积分数为 20%的 O_2/N_2 (50mg/L)气氛中升温至550 预处理1h,然后在 Ar 气氛中将温度降至室温,并切换至体积分数10% H_2/Ar 气氛。待基线平衡后, H_2 -TPR 过程在体积分 数10% H_2/Ar 气氛中以10 /min的升温速率由室温 升至1000 ,并由 TCD 检测器记录信号,升温过 程中产生的 H_2O 由冷阱去除。

2 结果与讨论

2.1 热重分析

图 1 为 Cu-SSZ-13 初始样品的热重曲线。随温度的升高,催化剂逐渐失水。当温度高于 300 时,模板剂中的有机物(TEPA)开始分解。温度继续升

图 1 Cu-SSZ-13 初始样品的热重曲线

高至 400 时,TEPA 完全分解,催化剂失重约 11.8%。催化剂制备过程中焙烧程序的目的是去除 模板剂,所以设置焙烧温度高于 500 即可满足该 需求。不同焙烧程序可影响催化剂中 Cu 物种的分 布,进而影响催化剂的催化性能。因此,优化催化 剂的焙烧程序是优化催化剂催化活性的有效方 式之一。

2.2 焙烧温度的影响

不同温度焙烧后 Cu-SSZ-13 催化剂的 XRD 图 谱如图 2 所示,可知各焙烧温度下所得催化剂都保 持良好的 CHA 结构,说明 Cu-SSZ-13 有着优秀的 热稳定性。不同焙烧程序影响 Cu 物种的种类及分 布,但不改变催化剂的化学组成。经化学组分分析 得知:催化剂中 Cu 负载量质量分数为 3.9%。因此, 催化剂可定义为 Cu_{3.9}-SSZ-13。图 3 为不同焙烧温 度下制备 Cu_{3.9}-SSZ-13 催化剂的 NH₃-SCR 催化活 性。当焙烧温度 700 时,催化剂在低温段表现出 较好的催化活性。当焙烧温度为 800 时,催化剂 在低温段(<225)的催化活性显著降低。随焙烧 温度的升高,催化剂的高温催化活性(>450)有 逐步降低的趋势。因此,综合催化剂在整个温度段的 催化活性情况,可以得知一步合成法制备 Cu-SSZ-13

图 2 不同焙烧温度所得 Cu-SSZ-13 的 XRD 图谱

图 3 不同焙烧温度下制备 Cu_{3.9}-SSZ-13 催化剂的 NH₃-SCR 活性差异

样品时的焙烧温度不宜超过 700 。

图 4 为不同焙烧温度下制备 $Cu_{3.9}$ -SSZ-13 催化 剂的水热稳定性差异。4 个催化剂经 750 老化 16h 后催化活性有不同程度的降低。550 焙烧所得催化 剂的水热稳定性最差;700 和 800 焙烧的催化剂 经老化后催化活性也大幅降低,显著低于 600 焙 烧所得催化剂。按照焙烧温度,4 个催化剂的水热 稳定性顺序可表示为 600 > 700 > 800 > 550 。水热稳定性是考察该系列催化剂实际应用于 柴油车尾气 NO_x 净化的重要因素。因此,可优选一 步合成法制备 Cu-SSZ-13 催化剂的焙烧温度为 600 。

焙烧温度影响催化剂活性及水热稳定性的主要 原因是影响了催化剂中 Cu 物种的化学性质。 H₂-TPR 图谱可清晰表述催化剂中 Cu 物种氧化还原 能力及稳定性的差异,如图 5 所示。文献报道,催 化剂中不同 Cu 物种的还原过程有较大差异。孤立 的 Cu²⁺还原过程分两步进行,在低温段 Cu²⁺还原为 Cu⁺,在高温段(>800K)Cu⁺还原为 Cu^{0[23]}。CuO_x 的还原是一步完成的,在低温段(<800K)即可直

图 5 不同焙烧温度所得 Cu_{3.9}-SSZ-13 的 H₂-TPR 图谱

接还原为 Cu^{0 [19, 24]}。因此,通过 H₂-TPR 图谱中 低温段与高温段 H₂的消耗量比较可以给出 Cu 物 种的存在形态是孤立的 Cu²⁺还是 CuO_x。随焙烧温 度的提高,计算各催化剂H2-TPR 谱线低温段(<)积分面积占总耗氢面积的比例分别为 500 50%、49%、52%和 56%。可知 550 、600 和 700 温度下焙烧样品中几乎只含有孤立的 Cu²⁺, 800 焙烧催化剂中含有少量 CuO。CuO 在 NH₃-SCR 反应活性较差,而且在高温段易导致 NH3 的氧化。所以, CuO的存在是 800 焙烧所 得催化剂催化活性较差的原因。Cu⁺到 Cu⁰的还原 温度与 Cu 物种的热稳定性有关,还原温度越高, 物种稳定性越高^[25]。由 H₂-TPR 谱图得知:600 焙烧样品中 Cu 物种稳定性极高(还原温度在 910), 550 、700 和 800 焙烧所得催化剂 中 Cu 物种在 600 时已经明显发生部分还原,导 致稳定性极高的 Cu 物种比例较小 ,这是 3 个催化 剂水热稳定性有较大差异的重要原因。

2.3 升温速率的影响

在优化焙烧温度为 600 的基础上,继续进 行焙烧过程中升温速率的优化。图 6 为设置不同 升温速率焙烧所得催化剂的催化活性。随升温速 率的提高,催化剂的催化活性呈现下降趋势。当 升温速率为 10 /min 时,催化活性明显下降。 不同升温速率制备 Cu_{3.9}-SSZ-13 催化剂的催化活 性顺序为 0.5 /min > 1 /min 5 /min > 10 /min。

图 7 为不同升温速率条件下制备 Cu_{3.9}-SSZ-13 催化剂的水热稳定性差异。随升温速率的提高, 催化剂的水热稳定性同样呈现下降趋势。4 个催 化剂的水热稳定性顺序可表示为 0.5 /min 1 /min > 5 /min > 10 /min。尽管以 0.5 /min 和 1 /min 的升温速率制备的两个催化剂具备相

图 7 不同升温速率下 600 焙烧制备 Cu_{3.9}-SSZ-13 催化剂的水热稳定性差异

似的催化活性和水热稳定性,考虑生产成本,1 /min 可作为优选焙烧过程的升温速率。综合上文的结 论可以得出一步合成法制备 Cu-SSZ-13 催化剂的 优选焙烧程序为以 1 /min 的升温速率升温至 600 焙烧 6h。

图 8 为不同升温速率下制备 $Cu_{3.9}$ -SSZ-13 催 化剂的 H_2 -TPR 图谱。随焙烧温度的提高,计算 各催化剂 H_2 -TPR 谱图低温段(<500)的积分 面积占总面积的比例分别为 50%、49%、51%和 54%。可知:较低的升温速率所得催化剂中只含 有孤立的 Cu^{2+} ;当升温速率设置为 10/min,催 化剂中会生成少量 CuO,不利于 NH₃-SCR 反应的 进行。同样根据高温段 H_2 -TPR 谱图中 Cu^+ 到 Cu^0 的还原温度判定不同升温速率焙烧所得催化剂中 Cu 物种的稳定性,得知以 0.5/min 和 1/min 升温速率焙烧的催化剂中稳定性极高的 Cu 物种 比例显著高于以 5/min 和 10/min 升温速率焙 烧所得催化剂。因此,较高的升温速率降低了催 化剂中 Cu 物种的稳定性,该变化不利于催化剂水 热稳定性的提高。

图 8 不同升温速率下 600 焙烧制备 Cu_{3.9}-SSZ-13 催化剂 的 H₂-TPR 图谱

3 结 论

(1)不同焙烧程序所得催化剂中 Cu 物种在种 类和稳定性方面有显著差异。过高的焙烧温度和升 温速率可导致催化剂中形成部分 CuO 并降低 Cu 物 种的稳定性 不利于 NH₃-SCR 反应的进行及水热稳 定性的提高。

(2)以1 /min 的升温速率升至 600 焙烧 6h 制得催化剂中只含有孤立的 Cu²⁺,并且 Cu 物种具 有超高稳定性,这是该催化剂具有更优的 NH₃-SCR 催化活性和水热稳定性的原因。

参考文献

- [1] 顾卫荣,周明吉,马薇,等.选择性催化还原脱硝催化剂的研究 进展[J].化工进展,2012,31(7):1493-1500.
- [2] 姜建清,潘华,孙国金,等.过渡金属/分子筛催化剂上选择性催 化还原氮氧化物的研究进展[J].化工进展,2012,31(1):98-106.
- [3] 杨博,郭翠梨,程景耀.SSZ-13分子筛的合成及应用进展[J].化 工进展,2014,33(2):368-373.
- [4] SCHMIEG S J , OH S H , KIM C H , et al. Thermal durability of Cu-CHA NH₃-SCR catalysts for diesel NO_x reduction[J]. Catalysis Today , 2012 , 184 : 252-261.
- [5] PARK J PARK H BAIK J et al. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH₃ for the urea selective catalytic reduction process[J]. Journal of Catalysis, 2006, 240: 47-57.
- [6] KWAK J H , TONKYN R G , KIM D H , et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO_x with NH₃[J]. Journal of Catalysis , 2010 , 275 : 187-190.
- [7] KWAK J H ,TRAN D ,BURTON S D ,et al. Effects of hydrothermal aging on NH₃-SCR reaction over Cu/zeolites[J]. Journal of Catalysis , 2012 , 287 : 203-209.
- [8] KWAK J H ,TRAN D ,SZANYI J et al. The effect of copper loading on the selective catalytic reduction of nitric oxide by ammonia over Cu-SSZ-13[J]. Catalysis Letters, 2012, 142: 295-301.
- [9] YE Q, WANG L, YANG R T. Activity, propene poisoning resistance and hydrothermal stability of copper exchanged chabazite-like zeolite catalysts for SCR of NO with ammonia in comparison to Cu/ZSM-5[J]. Applied Catalysis A : General, 2012,

427/428:24-34.

- [10] FICKEL D W, ELIZABETH D A, LAUTERBACH J A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Applied Catalysis B : Environmental, 2011, 102: 441-448.
- [11] ZONES S I. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of *N*,*N*,*N*-trimethyl-1-adamantammonium iodide[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87: 3709-3716.
- [12] WANG D , GAO F , PEDEN C H F , et al. Selective catalytic reduction of NO_x with NH_3 over a Cu-SSZ-13 catalyst prepared by a solid-state ion-exchange method [J]. ChemCatChem , 2014 , 6 : 1579-1583.
- [13] MARTÍNEZ-FRANCO R, MOLINER M, THOGERSEN J R, et al. Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NO_x [J]. ChemCatChem, 2013, 5: 3316-3323.
- [14] REN L M , ZHU L F , YANG C G , et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO_x by NH₃[J]. Chemical Communication(Camb) ,2011 ,47 :9789-9791.
- [15] DEKA U, LEZCANO-GONZALEZ I, WARRENDER S J, et al. Changing active sites in Cu-CHA catalysts : deNO_x selectivity as a function of the preparation method[J]. Microporous and Mesoporous Materials, 2013, 166 : 144-152.
- [16] XIE L J ,LIU F D ,REN L M ,et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NO with NH₃[J]. Environmental Science & Technology , 2014 , 48 : 566-572.
- [17] XIE L J , LIU F D , LIU K , et al. Inhibitory effect of NO₂ on the selective catalytic reduction of NO_x with NH₃ over one-pot-synthesized Cu-SSZ-13 catalyst[J]. Catalysis Science & Technology , 2014 , 4 : 1104-1110.
- [18] 任利敏,张一波,曾尚景,等.由新型铜胺络合物模板剂设计合成活 性优异的Cu-SSZ-13分子筛[J]. 催化学报 2012,33(1):92-105.
- [19] GAO F, WALTER E D, KARP E M, et al. Structure-activity relationships in NH₃-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29.
- [20] KWAK J H ,ZHU H ,LEE J H , et al. Two different cationic positions in Cu-SSZ-13?[J]. Chemical Communication (Camb), 2012, 48: 4758-4760.
- [21] KWAK J H, VARGA T, PEDEN C H F, et al. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption : a combined *in situ* TP-XRD, XANES/DRIFTS study[J]. Journal of Catalysis, 2014, 314: 83-93.
- [23] KEFIROV R, PENKOVA A, HADJIIVANOV K, et al. Stabilization of Cu⁺ ions in BEA zeolite : study by FTIR spectroscopy of adsorbed CO and TPR[J]. Microporous and Mesoporous Materials ,2008,116 : 180-187.
- [24] RICHTER M, FAIT M, ECKELT R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245: 11-24.
- [25] XIE L J, LIU F D, SHI X Y, et al. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NO_x with $NH_3[J]$. Applied Catalysis B: Environmental, 2015, 179: 206-212.