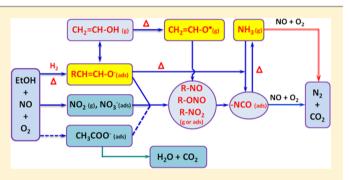
Environmental Science & Technology

Promotion Effect of H₂ on Ethanol Oxidation and NO_x Reduction with Ethanol over Ag/Al₂O₃ Catalyst


Yunbo Yu,[†] Yi Li,[†] Xiuli Zhang,[†] Hua Deng,[†] Hong He,^{*,†} and Yuyang Li[‡]

[†]State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

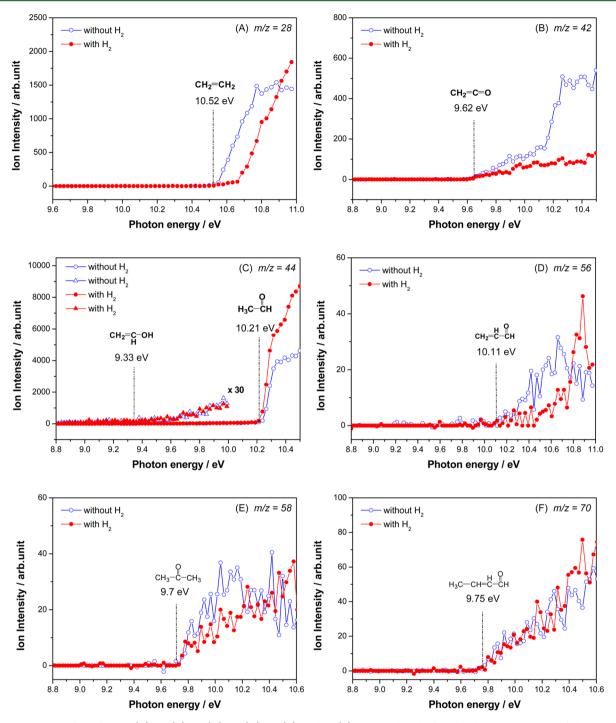
*National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China

Supporting Information

ABSTRACT: The catalytic partial oxidation of ethanol and selective catalytic reduction of NO_x with ethanol (ethanol–SCR) over Ag/Al₂O₃ were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H₂ promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al₂O₃, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H₂ addition favors the formation of ammonia during ethanol–SCR over Ag/Al₂O₃, the occurrence of which

creates an effective pathway for NO_x reduction by direct reaction with NH₃. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al₂O₃ by H₂. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NO_x reduction by ethanol for the first time, particularly in the presence of H₂. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al₂O₃.

1. INTRODUCTION


The diesel engine, which is a typical lean-burn engine, has the advantage of lower consumption of fuel and lower emissions of CO₂, CO and HC than the stoichiometric gasoline engine. However, the control of NO_x emission from lean-burn engines remains one of the major challenges for environmental catalysis. Among the NO_x reduction technologies being developed for controlling diesel engine emissions, selective catalytic reduction by hydrocarbons (HC-SCR) has attracted much attention as a more environmentally friendly alternative to the commercially used $NH_3/Urea-SCR$.¹⁻³ To date, numerous catalysts such as zeolitic oxide, base oxide/metal and noble metal catalysts have been found to be effective for HC-SCR, among which alumina supported silver (Ag/Al₂O₃) is known as one of the most effective catalysts.¹⁻⁶ When using oxygenated hydrocarbons as reductants, particularly ethanol, Ag/Al₂O₃ shows high activity even in the presence of SO_2 and H_2O .⁷ More importantly, the low-temperature activity of Ag catalysts can be significantly boosted by H₂ addition, both under laboratory conditions and on a full-scale vehicle equipped with a Ag/Al₂O₃ converter.^{8,9}

However, the origin of the promotion effect of H_2 on the HC– SCR over silver catalysts is still under debate, with possibilities including structural change of active sites and chemical effect on NO_x reduction.^{10–12} Over Ag/Al₂O₃, Satsuma and co-workers proposed that hydrogen would be indispensable for the formation of oxidized silver clusters (Ag_n^{δ +}), the presence of which is necessary for the promotion of C₃H₈ oxidation, and thus contributes to NOx reduction.^{3,12,13} Such transformation of Ag⁺ to Ag_n^{δ^+} on Ag/Al₂O₃ was further observed by Kim et al.¹⁴ during NO_x reduction by a mixture of ethanol and simulated diesel in the presence of H₂, accompanied by the creation of highly active oxygen species, enhancing the low-temperature activity of Ag/Al₂O₃ for NO_x reduction. The formation of oxidized Ag clusters was also identified by Burch and co-workers^{11,15} during C₈H₁₈–SCR in the presence of H₂ and CO over Ag/Al₂O₃, respectively, however CO did not promote the HC–SCR activity. As a result, it was proposed that the promoting effect of H₂ on HC–SCR should not be attributed to structural changes of the active sites but rather to a chemical effect, which was also concluded by Sazama et al.¹⁶ and Korhonen et al.¹⁷

Generally, it has been accepted that, as an initial step of HC–SCR, the partial oxidation of hydrocarbons to active oxygenates is triggered by H₂ addition at low temperatures, thus enhancing NO_x reduction.^{3,12,18} Based on in situ DRIFTS, it was proposed that the addition of H₂ results in remarkable promotion of partial oxidation of C₃H₈ over Ag/Al₂O₃, mainly to surface acetate.^{12,18} During the partial oxidation of hydrocarbons containing two or three carbon atoms (such as C₂H₂, C₂H₄, C₃H₆, and C₃H₈) over Ag/Al₂O₃, however, He and co-workers proposed that H₂

```
Received:August 19, 2014Revised:November 22, 2014Accepted:December 8, 2014
```

Published: December 8, 2014

Figure 1. PIE spectra for m/z = 28 (A), 42 (B), 44 (C), 56 (D), 58 (E), and 70 (F) measured in the flow of ethanol + O₂ over Ag/Al₂O₃ under low pressure at 603 K in the absence or presence of H₂.

addition promoted the formation of surface enolic species (RCH=CH-O⁻)-M, particularly in the low temperature range.^{19,20} Compared with surface acetate, the surface enolic species exhibited higher activity toward NO + O₂ to produce the key intermediate of isocyanate (-NCO), and thus contributed to the promoting effect of H₂ on HC-SCR. As a common feature of H₂-assisted HC-SCR over Ag/Al₂O₃, an increased intensity of reactive enolic species triggered by H₂ addition was also observed during partial oxidation of ethanol and ethanol-SCR.^{14,21} Using VUV-PIMS analysis, interestingly, Taatjes and co-workers identified that enols in the gas phase are common intermediates in hydrocarbon oxidation.²² The VUV-PIMS method provides

an opportunity to identify the reactive gas phase intermediates during a chemical reaction, based on the following advantages: (1) molecular-beam sampling and high vacuum downstream can ensure free molecular flow of the sampled gas and reduce collision effects, making it possible to trap unstable intermediates; (2) the employed vacuum ultraviolet single-photon photoionization can minimize fragmentation of target molecules, thus the structural integrity of reactive intermediates would be preserved and detected.^{23,24} With this powerful method, ethenol in the gas phase was unambiguously identified during the catalytic oxidation of C_2-C_4 alcohols over a Ag/Al₂O₃ catalyst.²⁵

Table 1. Intermediates Produc	ed during Partial Oxidation	on of Ethanol at 603 K over Ag	/Al ₂ O ₃ under Low Pressure

		without H ₂		with H ₂			
m/z	formula	measured ($\pm 0.05 \text{ eV}$)	ion intensity (arb.unit)	measured ($\pm 0.05 \text{ eV}$)	ion intensity (arb.unit)	species	ref 28
28	C_2H_4	10.52	22.46	10.52	15.32	ethylene	10.50 ± 0.02
42	C_2H_2O	9.62	7.49	9.62	3.33	ketene	9.614 ± 0.008
44	C_2H_4O	10.21	67.37	10.21	79.47	acetaldehyde	10.21 ± 0.01
	C_2H_4O	9.33	0.90	9.33	0.50	ethenol	9.33 ± 0.01
56	C_3H_4O	10.11	0.45	10.11	0.25	propenal	10.10 ± 0.01
58	C ₃ H ₆ O	9.7	0.45	9.7	0.29	acetone	9.71 ± 0.01
70	C_4H_6O	9.74	0.90	9.75	0.84	2-butenal	9.73 ± 0.01

Herein, the VUV–PIMS technique was employed to investigate the partial oxidation of ethanol and ethanol–SCR with or without H₂ over Ag/Al₂O₃. Based on the intermediates identified by VUV–PIMS, the pathway of partial oxidation of ethanol was established. This result could provide new insights into the synergistic effect of H₂ on the mechanisms for ethanol oxidation and the SCR of NO_x by alcohols over Ag/Al₂O₃ catalysts.

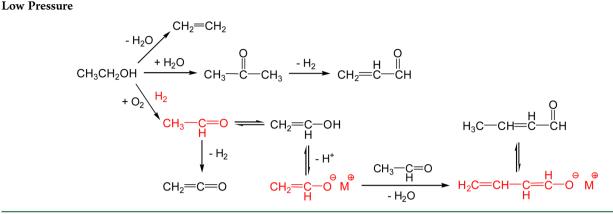
2. EXPERIMENTAL SECTION

2.1. Catalyst Preparation. *2.1.1. Preparation of Ag/Al_2O_3 Powders.* As described in our earlier papers,^{2,26} a Ag/Al_2O_3 catalyst with silver loading of 4 wt % was prepared by an impregnation method, immersing boehmite into an aqueous solution of silver nitrate. After impregnation, the excess water was removed in a rotary evaporator at 333 K, and then the sample was calcined in air at 873 K for 3 h.

2.1.2. Preparation of Washcoated Honeycomb Catalysts. Washcoated honeycomb catalysts were prepared using the 4 wt % Ag/Al₂O₃ powder prepared as mentioned above. Washcoat slurries were prepared by mixing 250 g Ag/Al₂O₃ powder and 750 g water in a ball mill.²⁵ Cordierite honeycombs with 400 cells per square inch (90 mm in diameter ×110 mm in length) were dipped into the washcoat slips, and excess slurry was blown out with an air knife. The samples were then dried at 393 K for 12 h and calcined at 873 K for 3 h. The washcoat loading was 110 g·L⁻¹ after calcination. Washcoated honeycomb catalyst with a volume of ca. 9 mL (15 mm in diameter ×51 mm in length) was used in VUV–PIMS experiments.

2.2. Experimental Setup for VUV–PIMS Measurement. The VUV-PIMS experiments were carried out at National Synchrotron Radiation Laboratory in Hefei, China. A molecularbeam mass spectrometer (MBMS) using synchrotron VUV light as the ionization source provided a novel method for the analysis of individual intermediates and products of the reaction. The details of the instrument have been reported elsewhere.^{23,25} In brief, the apparatus consists of the sample inlet system, the catalyst bed, the differential pumped system, and the photoionization chamber with a reflectron TOF MS. The sampled gas forms a molecular beam, which is skimmed and passes into a differentially pumped ionization region where it is crossed by the tunable vacuum ultraviolet VUV light. By tuning the light source, a series of mass spectra from 8.5 to 11.7 eV were measured. In most cases, the measurement time for each mass spectrum was 120 s. The baseline was subtracted from the integrated ion intensity. Each mass peak was integrated to yield the PIE spectra, a plot of ion intensity vs photon energy. The value of ionization energies (IEs) could be directly obtained from the PIE spectra. Considering the energy resolution of the monochromator and the cooling effect of the molecular beam,^{23,25} the experimental error of the measured IEs was less than 0.05 eV. Thus, compared

with known literature values, all components could be identified by their molecular weights from the PIMS and corresponding ionization thresholds obtained from PIE spectra.


A syringe pump (ISCO Inc.) was used to control the flow rate of aqueous ethanol solution, vaporized with the carrier gas (Ar) and passed into the catalyst bed. The temperature of the vaporizer was maintained at 423 K to ensure that the ethanol solution was vaporized completely. The catalyst bed was put in a low-pressure chamber (1.07 kPa) for the low pressure experiment and just outside the chamber for the experiment under normal atmospheric pressure conditions. The temperature of the catalyst bed was controlled by a temperature controller. A gaseous mixture of 1.92 vol % C₂H₅OH, 25 vol % O₂, 10 vol % H₂O, 0.8 vol % NO (if used), 1 vol % H₂ (if used) in Ar balance was passed through the catalyst bed at a total flow rate of 2 000 mL min⁻¹ (GHSV = 13 000 h⁻¹).

According to our previous studies under the same conditions, the final products of ethanol oxidation and ethanol–SCR over Ag/Al_2O_3 catalyst are N_2 , CO_2 , H_2O and $CO.^{26,27}$ In this experiment, we focused on the intermediates produced in these two processes, the intensities of which are not of the same magnitude as the final products mentioned above; therefore, we did not measure the PIE spectra of final products.

3. RESULTS AND DISCUSSION

3.1. Promotion Effect of H₂ **on the Ethanol Oxidation Over Ag/Al**₂**O**₃ **Catalyst.** The effect of H₂ on the ethanol oxidation over Ag/Al₂O₃ catalyst under low pressure conditions was investigated at 603 K. Comparing the experimental IEs with the known values from the literature, ²⁸ intermediates originating from catalytic partial oxidation of ethanol were identified, with the PIE spectra shown in Figure 1. The measured ionization thresholds and ion intensity for all the observed peaks are listed in Table 1. The PIE spectra of m/z = 28 indicate the formation of ethylene (C₂H₄) with the ionization threshold of 10.52 eV (Figure 1A).

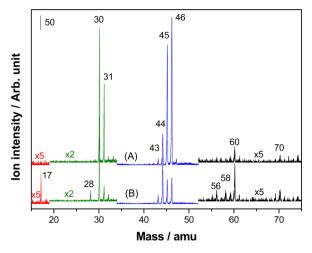
It is noteworthy that isomers can be determined by the PIE experiments. Ethenol (CH₂=HC-OH), as the isomer of acetaldehyde (CH₃-HC=O), has the same molecular weight as the latter. Here the ethenol and acetaldehyde can be distinguished by comparing their IEs from the PIE spectra with literature values. The PIE spectra for m/z = 44 (C₂H₄O) illustrate how to identify the isomers. As shown in Figure 1C, two onsets are clearly observed at 9.33 and 10.21 eV, which correspond to the IEs of ethenol and acetaldehyde according to the literature values of 9.33 ± 0.01 , and 10.21 ± 0.01 eV.²⁸ Ethenol, bearing OH groups adjacent to carbon–carbon double bonds, is thermodynamically unstable relative to acetaldehyde. Taatjes et al.²² studied 24 different flames of 14 prototypical single fuels and low-pressure flames of commercial gasoline using

VUV–PIMS spectrometry, and found that enols are common intermediates in hydrocarbon oxidation.

The PIE spectra of m/z = 42 with a feature threshold at 9.62 eV belong to ketene (Figure 1B), which possibly originates from the dehydrogenation of acetaldehyde. As shown in Table 1, the ketene gave the third strongest intensity (7.49%) among the measured intermediates when Ag/Al₂O₃ was exposed to ethanol + O_2 , while in the presence of H_2 , its intensity dropped to a much lower level of 3.33%. It is well-known that aldol condensation reactions of aldehydes are commonly catalyzed by metal oxides such as Al_2O_3 and TiO_2 .^{29,30} Over Ag/Al_2O_3 , such condensation of acetaldehyde may also occur during the partial oxidation of ethanol, resulting in the formation of butenal (CH₃-CH=CH-CH=O, Figure 1F). As presented in Figure 1D-E and Table 1, trace amounts of propenal (CH₂=CH-CH=O) and acetone $(CH_3-CO-CH_3)$ were also formed during the partial oxidation of ethanol over Ag/Al₂O₃, and lower relative concentrations were always observed when H_2 was introduced into the feed gas.

There are three pathways that could take place during the exposure of Ag/Al_2O_3 to ethanol + O_2 in the presence of water vapor: dehydration, dehydrogenation (by reaction with water), and partial oxidation of ethanol (Scheme 1). Comparing the ion intensities of intermediates listed in Table 1, it is clear that the partial oxidation of ethanol to acetaldehyde is the major pathway during the reaction of ethanol + O_2 over Ag/Al₂O₃.^{31,32} The presence of H₂ further promoted the formation of acetaldehyde, giving an ion intensity of 79.47%, which is 12.1% higher than that in the absence of H₂. Such enhancement of acetaldehyde formation by H₂ was also observed by Silva et al.³³ during ethanol–SCR over Ag/Al₂O₃. Combining these results with our previous in situ DRIFTS and TPD-MS measurements and DFT calculations, mainly pertaining to reaction on the surface of Ag/ Al_2O_3 , 26,27,34,35 the whole pathway involving partial oxidation of ethanol was proposed as shown in Scheme 1. Ethanol principally reacts with oxygen to form acetaldehyde, which is followed by isomerization to ethenol. Subsequently, a C2 enolic anion $(CH_2 = CH - O^-) - M^+$ is formed by hydrogen extraction when ethenol is adsorbed on the surface of Ag/Al₂O₃. Meanwhile, the occurrence of aldol condensation of acetaldehyde leads to the formation of C₄ enolic species (CH₂=CH-CH=CH-O⁻)-M⁺, the desorption of which results in the production of 2butenal (CH₃-CH=CH-CHO). In addition, dehydrogenation of acetaldehyde possibly occurs to produce ketene ($CH_2 = C =$ O).

As shown in Table 1, the formation of acetaldehyde was clearly promoted by H_2 introduction; meanwhile, other products in the gas phase related to partial oxidation, such as ketene, ethenol, and


2-butenal, had lower concentrations compared with those obtained in the absence of H_2 . On the surface of Ag/Al_2O_3 , it should be noted that the adsorbed enolic species originating from hydrocarbon oxidation were significantly enhanced by H_2 addition, which has been identified by our previous DRIFTS studies,^{19–21} and also by Kim et al.¹⁴ Over silver catalysts, Shimizu et al.^{12,13} proposed that the presence of H_2 promoted in situ generation of active oxygen species such as superoxide ions (O_2^{-}) , and OOH species, the occurrence of which is crucial for the partial oxidation of C_3H_8 . In our case, it is possible that the reactive oxygen species mentioned above would be produced in the presence of H_2 , and then enhance the formation of enolic species during partial oxidation of ethanol over Ag/Al_2O_3 .

Article

It is well-known that the dehydration of alcohols is catalyzed by various solid acid catalysts.^{36,37} The production of C_2H_4 during exposure of Ag/Al₂O₃ to ethanol + O₂ was also related to the acid sites (such as surface OH groups) on the surface of the silver catalyst.³⁸ The introduction of H₂ creates more reactive oxygen species over Ag/Al₂O₃, enhancing the partial oxidation of ethanol. As a result, ethanol available for dehydration to produce C_2H_4 decreased in the presence of H₂. The reaction between ethanol and water relating to acetone production has been considered as a dehydrogenation process, the occurrence of which was catalyzed by metal oxides (2EtOH + H₂O \rightarrow Me₂CO + CO₂ + 4H₂).³⁹ The addition of H₂ is therefore beneficial for the reverse reaction, decreasing the yield of acetone, and also its further dehydrogenation to CH₂=CH–CHO, as shown in Table 1 and Scheme 1.

3.2. Promotion Effect of H₂ on Ethanol–SCR Over Ag/ Al₂O₃ Catalyst. To further investigate the synergistic effect of H₂, we also studied the SCR of NO_x by ethanol over the Ag/ Al₂O₃ catalyst at 570 K under normal atmospheric pressure. Figure 2 shows VUV–PIMS spectra of the ethanol–SCR over Ag/Al₂O₃ at the photon energy of 11.7 eV. In this case, species with molecular weight of 28, 44, 56, 58, and 70 were observed, all of which were also detected during the partial oxidation of ethanol over Ag/Al₂O₃ under low pressure. These results clearly indicate that similar reaction pathways relating to ethanol oxidation occurred during exposure of Ag/Al₂O₃ to ethanol + O₂ and to NO + ethanol + O₂. The *m*/*z* value of 60 due to acetic acid (CH₃COOH) was detected with low intensity, which originated from partial oxidation.^{1,2,4} The peak at *m*/*z* = 30 was due to NO.

To identify the origin of the species observed in VUV–PIMS experiment, we also measured the corresponding PIE spectra (Figure 3). The peaks at 31 and 45 exhibited appearance energies at 11.22 and 10.73 eV, respectively. These results indicate that the fragment ions of $[CH_3O]^+$ and $[C_2H_5O]^+$ were formed when

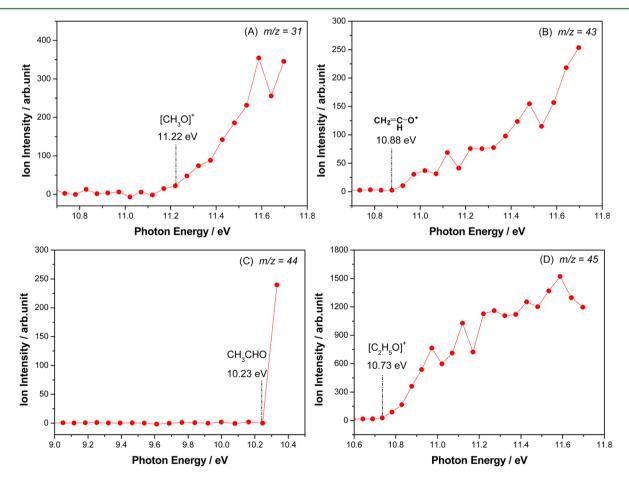


Figure 2. VUV photoionization mass spectra of ethanol–SCR at 570 K over Ag/Al_2O_3 (A) without H_2 and (B) with H_2 under normal atmospheric pressure at the photon energy of 11.7 eV.

ethanol was ionized. As shown in Figure 3C, the formation of acetaldehyde was clearly identified, while ethenol was hardly observed. Interestingly, the PIE spectra of m/z = 43 exhibited an onset of 10.88 eV. According to the literature value of 10.85 eV,²⁸ this indicates that vinyloxy radical (CH₂=CH–O⁻) was produced.

We also integrated the areas of PIMS peaks (Figure 3), with the result shown in SI Table S1. It is clear that introduction of H_2 significantly decreased the concentration of NO, 33.4% lower than that in the absence of H_2 . In the presence of H_2 , meanwhile, the intensities of peaks assignable to ethanol (m/z = 31, 45, and 46) were also much lower than those in the absence of H_2 , dropping 77.1–81.9%. This result suggests that H_2 promotes reactions among NO, ethanol, and O_2 . Meanwhile, increased intensities of acetaldehyde and vinyloxy radical were clearly observed in the presence of H_2 , rising 41.1% and 35.3%, respectively.

The vinyloxy radical is an important intermediate in a few chemical reactions involving atmospheric and combustion chemistry. It is a main product in the reaction of $O(^{3}P)$ atoms with a few alkenes such as ethene and propene.⁴⁰ Here, we found that the vinyloxy radical was also produced during ethanol-SCR over Ag/Al₂O₃ at normal atmospheric pressure. As proposed by Bouchoux et al.,⁴¹ the vinyloxy radical could be formed by deprotonation from the hydroxyl group of the ionized ethenol, as presented in eq 1. With this in mind, it is reasonable that ethenol was hardly observed during the NO_x reduction by ethanol at normal atmospheric pressure (Figure 3C). During the partial oxidation of ethanol over Ag/Al₂O₃ under low pressure, however, the vinyloxy radical was hardly observed. This possibly means that a higher pressure is beneficial for the deprotonation of ethenol to produce vinyloxy, by giving an opportunity for collision between ethenol and other species to facilitate hydrogen extraction. Previous studies also confirmed that even at room

Figure 3. PIE spectra for m/z = 31 (A), 43 (B), 44 (C), and 45 (D) measured in the flow of ethanol + O₂ + NO + H₂ over Ag/Al₂O₃ under normal atmospheric pressure at 570 K.

temperature, the vinyloxy radical in the gas phase can react with NO and NO₂, particularly in the presence of O_2 , ^{41,42} all of which are present in the ethanol–SCR system.

$$CH_2 = CH - OH \xrightarrow{-H^+} [CH_2 = CH - O \leftrightarrow CH_2 - CH = O]$$
(1)

$$CH_2-CH=O + NO \rightarrow O=CH-CH_2-NO$$
 (2)

$$CH_2 = CH - O + NO \rightarrow CH_2 = CH - O - NO$$
 (3)

$$CH_2 = CH - O - NO \rightarrow O = CH - CH_2 - NO$$
 (4)

 $O=CH-CH_2-NO \longrightarrow O=CH-CH=N(OH) \longrightarrow -O=N + H_2O + CO$

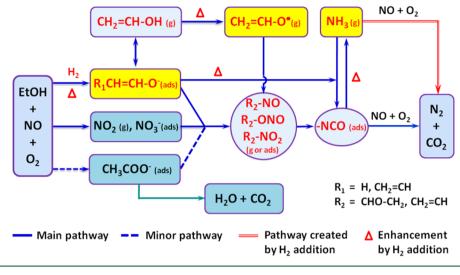
-C=N=O → -N=C=O (5)

$$CH_2-CH=O + NO_2 \rightarrow O=CH-CH_2-NO_2$$
 (6)

$$CH_2 - CH = O + NO_2 \rightarrow CH_2 = C = O + HONO$$
 (7)

As for HC–SCR of NO_{xy} most of the studies dealing with the reaction mechanism have been restricted to surface phenomena. However, Eränen and co-workers⁴³ proposed that octane-SCR over Ag/Al_2O_3 not only occurs on the surface of the catalyst but also continues in the gas phase, leading to the final products of N_2 , H_2O , and CO_2 . The occurrence of such a gas-phase reaction was proved by placing a commercial Pt-supported oxidation catalyst after the Ag/Al₂O₃ catalyst. When the oxidation catalyst was placed immediately behind the Ag/Al_2O_3 , NO_r conversion to N₂ was decreased dramatically. A similar gas-phase reaction was also observed during NO_x reduction by ethanol over Ag/ Al₂O₃.^{31,44} The above results strongly suggest that very active intermediates were present in the gas phase during HC-SCR over Ag/Al₂O₃. Here, we found that the reactive vinyloxy radical was produced during ethanol-SCR, the appearance of which may induce a sequence of reactions, beginning with interaction with NO_x in the gas phase.

The kinetics of the reaction of vinyloxy radical with NO was investigated by Delbos et al.⁴⁵ over wide ranges of pressure (3.9– 90.2 kPa) and temperature (295-413 K). In this process, an ab initio calculation further predicted that ON-CH2CHO and CH2=CHONO are the major products. 2-Nirosoethanal, ON-CH₂CHO, can formally be considered as the addition product of NO to the carbon of the vinyloxy radical, CH_2 -CHO (eq 2), whereas ethene nitrite (CH2=CHONO) would be formed by addition of NO at the terminal oxygen of CH_2 =CHO[•] (eq 3). Considering that ON-CH₂CHO is the most stable product during the reaction of CH₂=CHO with NO, the isomerization of CH_2 =CHONO to ON-CH₂CHO may take place (eq 4).⁴⁵ Transformation of ON-CH₂CHO to its enol tautomer, -CH= N(OH), with subsequent dehydration to -CN and transformation to -NCO (eq 5), has been proposed as a possible route for -NCO formation.^{1,27,46} The gas-phase kinetics of the CH_2 =CHO + NO₂ reaction was measured by Barnhard et al.,⁴⁷ during which two reaction pathways would take place with no appreciable reaction barrier, as described in eqs 6 and 7. The produced organo-nitro compound of CHO-CH2-NO2 was also able to produce -NCO via enol and -CNO formation, as shown in eq 8.^{1,27,46}


As described above, the reaction involving vinyloxy radical occurring in the gas phase may contribute to NO_x reduction,

particularly in the presence of H_2 , the identification of which may be crucial for understanding the mechanism of HC-SCR over Ag/Al₂O₃. Considering that both the gas-phase reaction of vinyloxy radical $+ NO_x$ and the surface reaction of enolic species + NO_x may result in the formation of organo-nitrite and -nitro species, the presence of these organo-nitrogen compounds during ethanol–SCR over Ag/Al₂O₃ was further investigated by TPD-MS (Figure S1, see also Supporting Information (SI)). Compared with the TPD spectra of Ag/Al_2O_3 exposed to NO + O_2 (SI Figure S1B), a new peak assignable to NO desorption was clearly observed at 703 K after exposure of the catalyst to a flow of NO + C_2H_5OH + O_2 (SI Figure S1C), which was accompanied by the appearance of CO_2 and CO (or N_2). At this temperature, however, the desorption of CO₂ and CO did not occur after exposing the Ag/Al_2O_3 to ethanol + O_2 (SI Figure S1A). Consequently, we think that these peaks of NO, CO₂, CO (or N_2) appearing at 703 K in SI Figure S1C were derived from the decomposition of nitrogen- and oxygen-containing compounds. During ethanol–SCR over Ag/Al_2O_3 , the potential intermediates containing nitrogen and oxygen are organo-nitrogen species (R-NO, R-NO₂, and R-ONO), -NCO, and -CN, the latter two of which possess the molecular C/N ratio of 1.^{1,2} To further identify which species contributed to the desorption of NO, CO_{2} , CO (or N_2), the TPD spectra presented in SI Figure S1C were fitted on the basis of deconvoluted curves (SI Figure S2), and then peak areas were integrated. Based on this, the molecular ratio of C/N related to the desorption of NO, CO₂, and CO (or N_2) at 703 K was calculated, with an average value of 2.2. Such a C/N ratio is very close to that in the organo-nitrogen compounds ON-CH₂CHO, CHO-CH₂-NO₂, and CH₂=CHONO, which in turn confirms our speculation involving the formation of these intermediates during ethanol-SCR over Ag/Al₂O₃.

In the presence of H₂, it should be noted that a new peak at m/z = 17 was observed (Figure 2). Comparing the molecular weight from the PIMS,²⁸ NH₃ can be identified. Back in 1973, Unland⁴⁸ found that –NCO species adsorbed on the Pt/A1₂O₃ surface reacted with H₂O to yield NH₃ and CO₂. The hydrolysis of –NCO on Ag/Al₂O₃ catalysts was further demonstrated by DRIFTS and MS measurements during HC–SCR.⁴⁹ In the presence of H₂, Richter et al. found that NH₃ exhibited high activity toward NO_x reduction over Ag/Al₂O₃ over a wide temperature range of 473–823 K.⁵⁰ Our results presented in SI Figure S3 also confirmed that H₂ significantly promoted NH₃–SCR over Ag/Al₂O₃, giving 100% NO_x conversion to N₂ at 480 K; while in the absence of H₂, the NO_x reduction by NH₃.

More recently, using transient activity testing and in situ DRIFTS analysis of ethanol–SCR over Ag/Al_2O_3 , we found that NH₃ originating from the hydrolysis of –NCO species can in turn react with enolic species, to produce –NCO. The reaction between ammonia and enolic species thus creates a cyclic pathway for NO_x reduction by ethanol, which may guarantee the high efficiency of the ethanol–SCR system.⁵¹ With this in mind, it is possible that the cyclic pathway between enolic species and ammonia was also enhanced by H₂ addition during ethanol–SCR over Ag/Al_2O_3 . As shown in Figure 2, the signal of NH₃ was much lower than that of NO and ethanol even in the presence of H₂. Yet, it is not necessarily true that only a trace amount of ammonia was produced during ethanol–SCR, because it is possible that large amount of the produced NH₃ was consumed by reaction with enolic species and/or with NO + H₂. As a result,

Scheme 2. Possible Effect of H_2 on the SCR of NO_x by Ethanol Over Ag/Al₂O₃

it is difficult to accurately measure the contribution of NH_3 in NO_x reduction by ethanol.

Based on the above information, we can conclude that the promotion effect of H₂ on the NO_x reduction by ethanol over Ag/Al_2O_3 can be proposed as shown in Scheme 2. Addition of H_2 improves the formation of the surface enolic species during partial oxidation of ethanol over Ag/Al₂O₃, together with the formation of surface acetate. Compared with acetate, the surface enolic species show higher activity toward NO + O2 to produce -NCO via the formation of organic nitrogen species (R-NO, R–ONO, and R–NO₂), the occurrence of which is also promoted by H_2 introduction.²¹ The –NCO species, as a key intermediate in HC-SCR, further reacts with NO + O2 to produce N_2 .^{1,2} During this process, meanwhile, the hydrolysis of -NCO to NH₃ also occurred, which was enhanced by the presence of H₂. The formation of NH₃ therefore accelerated its reaction with enolic species to produce -NCO species again, benefiting ethanol-SCR over Ag/Al₂O₃. In the presence of H_{24} meanwhile, the produced NH_3 is reactive toward NO + O_2 to form N_{2} , creating an effective NH_3 -SCR pathway for NO_x reduction. The presence of H₂ enhanced the formation of reactive vinyloxy radical, the appearance of which may create a gas-phase pathway contribution to the formation of organic nitrogen species in the gas phase. Identification of such a reaction occurring in the gas phase may be crucial for understanding the mechanism of HC-SCR over Ag/Al₂O₃.

ASSOCIATED CONTENT

Supporting Information

TPD-MS spectra, deconvolution results of TPD-MS, relevant discussion of TPD-MS, activity of Ag/Al₂O₃ for NH₃-SCR, and integrated areas of species (or their fragment ions) measured in ethanol-SCR under normal atmospheric pressure at 570 K are available. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: honghe@rcees.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

wE are grateful to Prof. Fei Qi for his help on the experimental design and realization. This work was financially supported by the National Natural Science Foundation of China (21373261 and 21177142), and the National High Technology Research and Development Program of China (863 Program, 2013AA065301).

REFERENCES

(1) Burch, R.; Breen, J. P.; Meunier, F. C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. *Appl. Catal., B* **2002**, *39*, 283–303.

(2) He, H.; Yu, Y. B. Selective catalytic reduction of NOx over Ag/ Al_2O_3 catalyst: From reaction mechanism to diesel engine test. *Catal. Today* **2005**, *100*, 37–47.

(3) Granger, P.; Parvulescu, V. I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. *Chem. Rev.* **2011**, *111*, 3155–3207.

(4) Shimizu, K.; Satsuma, A. Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects. *Phys. Chem. Chem. Phys.* **2006**, *8*, 2677–2695.

(5) Liu, Z.; Woo, S. I. Recent advances in catalytic deNOx science and technology. *Catal. Rev.* **2006**, *48*, 43–89.

(6) Liu, Z. M.; Li, J. H.; Junaid, A. S. M. Knowledge and know-how in improving the sulfur tolerance of deNOx catalysts. *Catal. Today* **2010**, *153*, 95–102.

(7) Miyadera, T. Selective reduction of NOx by ethanol on catalysts composed of Ag/Al_2O_3 and Cu/TiO_2 without formation of harmful by-products. *Appl. Catal., B* **1998**, *16*, 155–164.

(8) Satokawa, S. Enhancing the $NO/C_3H_8/O_2$ reaction by using H_2 over Ag/Al_2O_3 catalysts under lean-exhaust conditions. *Chem. Lett.* **2000**, 294–295.

(9) Klingstedt, F.; Arve, K.; Eränen, K.; Murzin, D. Y. Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles. *Acc. Chem. Res.* **2006**, *39*, 273–282.

(10) Sazama, P.; Wichterlová, B. Selective catalytic reduction of NO by hydrocarbons enhanced by hydrogen peroxide over silver/alumina catalysts. *Chem. Commun.* **2005**, 4810–4811.

(11) Breen, J. P.; Burch, R. A review of the effect of the addition of hydrogen in the selective catalytic reduction of NOx with hydrocarbons on silver catalysts. *Top. Catal.* **2006**, *39*, 53–58.

(12) Shimizu, K.; Sawabe, K.; Satsuma, A. Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. *Catal. Sci. Technol.* **2011**, *1*, 331–341.

Environmental Science & Technology

(13) Shimizu, K.; Tsuzuki, M.; Kato, K.; Yokata, S.; Okumura, K.; Satsuma, A. Reductive activation of O_2 with H_2 -reduced silver clusters as a key step in the H_2 -promoted selective catalytic reduction of NO with C_3H_8 over Ag/Al₂O₃. *J. Phys. Chem. C* **2007**, *111*, 950–959.

(14) Kim, P. S.; Kim, M. K.; Cho, B. K.; Nam, I. S.; Oh, S. H. Effect of H₂ on deNOx performance of HC–SCR over Ag/Al₂O₃: Morphological, chemical, and kinetic changes. *J. Catal.* **2013**, *301*, 65–76.

(15) Breen, J. P.; Burch, R.; Hardacre, C.; Hill, C. J. Structural investigation of the promotional effect of hydrogen during the selective catalytic reduction of NOx with hydrocarbons over Ag/Al₂O₃ catalysts. *J. Phys. Chem. B* **2005**, *109*, 4805–4807.

(16) Sazama, P.; Čapek, L.; Drobná, H.; Sobalík, Z.; Dědeček, J.; Arve, K.; Wichterlová, B. Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV–vis study. *J. Catal.* **2005**, 232, 302–317.

(17) Korhonen, S. T.; Beale, A. M.; Newton, M. A.; Weckhuysen, B. M. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO. *J. Phys. Chem. C* **2011**, *115*, 885–896.

(18) Bentrup, U.; Richter, M.; Fricke, R. Effect of H_2 admixture on the adsorption of NO, NO₂ and propane at Ag/Al₂O₃ catalyst as examined by in situ FTIR. *Appl. Catal., B* **2005**, *55*, 213–220.

(19) Zhang, X. L.; Yu, Y. B.; He, H. Effect of hydrogen on reaction intermediates in the selective catalytic reduction of NOx by C_3H_6 . *Appl. Catal., B* **2007**, *76*, 241–247.

(20) Yu, Y. B.; He, H.; Zhang, X. L.; Deng, H. A common feature of H₂-assisted HC-SCR over Ag/Al₂O₃. *Catal. Sci. Technol.* **2014**, *4*, 1239–1245.

(21) Zhang, X. L.; He, H.; Ma, Z. C. Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al_2O_3 . *Catal. Commun.* **2007**, *8*, 187–192.

(22) Taatjes, C. A.; Hansen, N.; McIlroy, A.; Miller, J. A.; Senosiain, J. P.; Klippenstein, S. J.; Qi, F.; Sheng, L. S.; Zhang, Y. W.; Cool, T. A.; Wang, J.; Westmoreland, P. R.; Law, M. E.; Kasper, T.; Kohse-Hoinghaus, K. Enols are common intermediates in hydrocarbon oxidation. *Science* **2005**, *308*, 1887–1889.

(23) Li, Y.; Qi, F. Recent applications of synchrotron VUV photoionization mass spectrometry: Insight into combustion chemistry. *Acc. Chem. Res.* **2010**, *43*, 68–78.

(24) Liu, F. D.; Yu, Y. B.; Hong, H. Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: Structure-activity relationship and reaction mechanism aspects. *Chem. Commun.* **2014**, *50*, 8445–8463.

(25) Li, Y.; Zhang, X. L.; He, H.; Yu, Y. B.; Yuan, T.; Tian, Z. Y.; Wang, J.; Li, Y. Y. Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al₂O₃ catalyst. *Appl. Catal., B* **2009**, *89*, 659–664.

(26) Yu, Y. B.; Gao, H. W.; He, H. FTIR, TPD and DFT studies of intermediates on Ag/Al_2O_3 during the catalytic reduction of NO by C_2H_5OH . *Catal. Today* **2004**, *93*–*95*, 805–809.

(27) Yan, Y.; Yu, Y. B.; He, H.; Zhao, J. J. Intimate contact of enolic species with silver sites benefits the SCR of NOx by ethanol over Ag/ Al_2O_3 . J. Catal. **2012**, 293, 13–26.

(28) Linstrom, P. J.; Mallard, W. G. NIST Chemistry Webbook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology, Gaithersburg, MD, 2003; http://webbook.nist.gov.

(29) El-Maazawi, M.; Finken, A. N.; Nair, A. B.; Grassian, V. H. Adsorption and photocatalytic oxidation of acetone on TiO₂: An in situ transmission FT-IR study. *J. Catal.* **2000**, *191*, 138–146.

(30) Zaki, M. I.; Hasan, M. A.; Al-Sagheer, F. A.; Pasupulety, L. Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica–alumina versus silica and alumina. *Langmuir* **2000**, *16*, 430–436.

(31) Lee, J. H.; Schmieg, S. J.; Oh, S. H. Improved NOx reduction over the staged Ag/Al₂O₃ catalyst system. *Appl. Catal.*, A **2008**, 342, 78–86.

(32) Flura, A.; Courtois, X.; Can, F.; Royer, S.; Duprez, D. A study of the NOx selective catalytic reduction with ethanol and its by-products. *Top. Catal.* **2013**, *56*, 94–103.

(33) da Silva, R.; Cataluña, R.; Martínez-Arias, A. Selective catalytic reduction of NOx using propene and ethanol over catalysts of Ag/Al_2O_3 prepared by microemulsion and promotional effect of hydrogen. *Catal. Today* **2009**, *143*, 242–246.

(34) Yu, Y. B.; He, H.; Feng, Q. C. Novel enolic surface species during partial oxidation of CH_3CHO , C_2H_5OH , and C_3H_6 on Ag/Al_2O_3 : An in situ DRIFTS study. *J. Phys. Chem. B* **2003**, *107*, 13090–13092.

(35) Yu, Y. B.; He, H.; Feng, Q. C.; Gao, H. W.; Yang, X. Mechanism of the selective catalytic reduction of NOx by C_2H_5OH over Ag/Al_2O_3 . *Appl. Catal, B* **2004**, *49*, 159–171.

(36) Bryant, D. E.; Kranich, W. L. Dehydration of alcohols over zeolite catalysts. *J. Catal.* **1967**, *8*, 8–13.

(37) Takahara, I.; Saito, M.; Inaba, M.; Murata, K. Dehydration of ethanol into ethylene over solid acid catalysts. *Catal. Lett.* **2005**, *105*, 249–252.

(38) Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. Hydroxyl groups on γ -alumina surfaces: A DFT study. *J. Catal.* **2002**, 211, 1–5.

(39) Nakajima, T.; Yamaguchi, T.; Tanabe, K. Efficient synthesis of acetone from ethanol over ZnO-CaO catalyst. J. Chem. Soc., Chem. Commun. 1987, 394–395.

(40) Quandt, R.; Min, Z.; Wang, X.; Bersohn, R. Reactions of $O(^{3}P)$ with alkenes: H, CH₂CHO, CO, and OH Channels. *J. Phys. Chem. A* **1998**, *102*, 60–64.

(41) Bouchoux, G.; Chamot-Rooke, J.; Leblanc, D.; Mourgues, P.; Sablier, M. Proton affinity and heat of formation of vinyloxy $[CH_2CHO]$ and acetonyl $[CH_2COCH_3]$ radicals. *ChemPhysChem* **2001**, *4*, 235–241.

(42) Slagle, I. R.; Gutman, D. Kinetics of free radicals produced by infrared multiphoton-induced decomposition. 2. Formation of acetyl and chlorodifluoromethyl radicals and their reactions with nitrogen dioxide. *J. Am. Chem. Soc.* **1982**, *104*, 4741–4748.

(43) Eränen, K.; Lindfors, L.-E.; Klingstedt, F.; Murzin, D. Y. Continuous reduction of NO with octane over a silver/alumina catalyst in oxygen-rich exhaust gases: Combined heterogeneous and surface-mediated homogeneous reactions. J. Catal. 2003, 219, 25–40.

(44) Shi, X.; Yu, Y.; He, H.; Shuai, S.; Dong, H.; Li, R. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy_duty diesel engine. *J. Environ. Sci.* 2008, *20*, 177–182.

(45) Delbos, E.; Devolder, P.; ElMaimouni, L.; Fittschen, C.; Brudnik, K.; Jodkowski, J. T.; Ratajczak, E. Pressure and temperature dependence of the rate constants for the association reactions of vinoxy and 1-methylvinoxy radicals with nitric oxide. *Phys. Chem. Chem. Phys.* **2002**, *4*, 2941–2949.

(46) Yang, W.; Zhang, R. D.; Chen, B. H.; Duprez, D.; Royer, S. New aspects on the mechanism of C_3H_6 selective catalytic reduction of NO in the presence of O_2 over $LaFe_{1-x}(Cu, Pd)_xO_{3-\delta}$ perovskites. *Environ. Sci. Technol.* **2012**, 46, 11280–11288.

(47) Barnhard, K. I.; Santiago, A.; He, M.; Asmar, F.; Weiner, B. R. Pressure and temperature dependence of the C_2H_3O +NO₂ reaction. *Chem. Phys. Lett.* **1991**, *178*, 150–156.

(48) Unland, M. L. Isocyanate intermediates in the reaction nitrogen monoxide + carbon monoxide over a platinum/aluminum oxide catalyst. *J. Phys. Chem.* **1973**, *77*, 1952–1956.

(49) Tamm, S.; Ingelsten, H. H.; Palmqvist, A. E. C. On the different roles of isocyanate and cyanide species in propene–SCR over silver/ alumina. *J. Catal.* **2008**, 255, 304–312.

(50) Richter, M.; Fricke, R.; Eckelt, R. Unusual activity enhancement of NO conversion over Ag/Al_2O_3 by using a mixed NH_3/H_2 reductant under lean conditions. *Catal. Lett.* **2004**, *94*, 115–118.

(51) Yu, Y. B.; Zhao, J. J.; Yan, Y.; Han, X.; He, H. A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by ethanol over Ag/Al₂O₃. *Appl. Catal., B* **2013**, *136–137*, 103–111.