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a b s t r a c t

Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate
as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation
(PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had
visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the
series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were
then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman
spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry,
ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse
reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on
the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature
range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under
visible and UV light over the series of catalysts. Although the samples calcined at low temperatures
had very high SSA, good crystallinity, strong visible light absorption and also low PL emission
intensity, they showed very low PCO activity due to their very low number of acid sites for NH3

adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid
sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3

under UV light.

Introduction

Indoor air quality has recently attracted more and more
attention with the increasing concern for the public envi-
ronment and health, especially in urban cities (Fischer et
al., 2003). Gaseous ammonia (NH3), released from walls
containing urea or ammonia compound-based antifreezes,
is becoming one of the major indoor air pollutants, partic-
ularly in China (Bai et al., 2006; Meng et al., 2011). NH3
is an alkaline gas with a pungent odor and is harmful to the
environment and people’s health. Long-time exposure to
NH3 can cause irritation of the skin, throat, lungs and eyes,
affect the respiratory system and even cause permanent

∗Corresponding author. E-mail: cbzhang@rcees.ac.cn

damage to the organs (Bai et al., 2006). Therefore, it
is of great interest to eliminate indoor air NH3 to meet
environmental regulations and health needs.

The traditional remediation techniques, such as adsorp-
tion and ventilation, cannot eliminate NH3 completely
(Kim and Shin, 2001). NH3 can be completely removed by
selective catalytic oxidation using various catalysts such as
metals, metal oxides and zeolites, but they cannot realize
effective abatement of gaseous NH3 at room temperature
(Akah et al., 2005; Zhang et al., 2009; Cui et al., 2010).
Photocatalytic oxidation (PCO) is a promising method
for removing indoor air pollutants such as formaldehyde,
volatile organic compounds, etc, under ultraviolet (UV)
light irradiation at ambient temperature (Guo et al., 2008;
Chen et al., 2009; Mo et al., 2009). TiO2 is a very effective
photocatalyst known for the stability of its chemical struc-
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ture, biocompatibility and physical, optical and electrical
properties (Chen and Mao, 2007). Therefore, TiO2-based
photocatalysts have been extensively studied for the elimi-
nation of indoor and outdoor organic pollutants from both
water and air in various environmental applications (Carp,
2004; Fu et al., 2005; Li et al., 2010; Liu et al., 2012).
In contrast, only a relative few recent studies have been
focused on the photocatalytic removal of gaseous NH3.
Several types of modified TiO2-based photocatalysts such
as TiO2-activated carbon composites (Nazir et al., 2003;
Hou et al., 2006), woven fabric-supported TiO2 (Dong et
al., 2007a, 2007b) and latex paint-supported film nano-
TiO2 (Geng et al., 2008a, 2008b), etc, have been evaluated
for the PCO of NH3 under UV light irradiation. The
products distribution during the PCO of NH3 has been
investigated by FT-IR or GC/GC-MS, and N2 was found
to be the main gaseous product; N2O, NO2

− and NO3
−

were registered as the major by-products (Hou et al., 2006;
Yamazoe et al., 2007a; Yamazoe et al., 2007b; Kolinko and
Kozlov, 2009).

The previous studies on the PCO of NH3 were all
performed under UV light irradiation. Therefore, the de-
velopment of visible-light-activated TiO2 for the PCO of
NH3 is still of great interest. Most attempts to realize
visible-light-activation of TiO2 have been concentrated on
doping TiO2 with nonmetallic elements such as carbon
(Ren et al., 2007; Huang et al., 2008; Dong et al., 2011),
nitrogen (Kuroda et al., 2005; Kang et al., 2008; Cheng
et al., 2012), sulfur (Jimmy et al., 2005; Li et al., 2007),
fluorine (Yu et al., 2002; Wang et al., 2008; Li and Shang,
2010), iodine (Tojo et al., 2008) and boron (In et al.,
2007). In particular, carbon atom-doping has been shown
to be more effective than other materials in promoting
the visible light activation of TiO2 (Leary and Westwood,
2011). Several methods such as impregnation (Miyawaki et
al., 2011), mild oxidation of TiC (Shen et al., 2006), sol-gel
(Lin et al., 2006; Xiao and Ouyang, 2009), hydrothermal
synthesis (Dong et al., 2009), chemical vapor deposition
(Kuo et al., 2007), etc, have been employed to synthesize
carbon-doped TiO2. Among them, the sol-gel technique,
which is able to achieve intimate mixing and chemical
interaction between carbon and TiO2 at relatively low
temperatures, is the most widely applied method (Macwan
et al., 2011). In some cases, the source of carbon species
was from the organic precursor of TiO2 and the optimum
carbon doping amount could be tuned by changing the
calcination temperature, therefore the calcination temper-
ature showed a great influence on the activity of these
photocatalysts (Lin et al., 2006; Górska et al., 2008; Xiao
and Ouyang, 2009). Tseng et al. (2006) prepared carbon-
modified catalysts for PCO of NOx by a sol-gel process
using titanium alkoxides and ethanol with nitric acid at
various calcination temperatures (150–600°C). They found
that the presence of carbonaceous species was responsible
for the absorption of visible light by TiO2, and a sample

calcined at 200°C exhibited the highest photoactivity for
NO oxidation under both visible and UV light. Górska et
al. (2008) prepared carbon-modified catalysts using titani-
um(IV) isopropoxide and studied the effect of calcination
temperature on TiO2 photoactivity in phenol degradation
under visible and UV light. They observed that a sample
calcined at 350°C was the most visible-light-active catalyst
and that the carbon residues formed during calcination
accounted for the visible light activation.

In this study, we also prepared carbon-containing nano-
sized TiO2 catalysts with the method described by Tseng
et al. (2006). Our attempt here was aimed toward screening
for a visible-light-active photocatalyst for the PCO of
gaseous NH3 by tuning the calcination temperature during
preparation. The as-prepared catalysts were tested under
both visible and UV light. Although the series of catalysts
was reported to be visible-light-active for NO oxidation
(Tseng et al., 2006), these catalysts showed no visible-
light activity for the PCO of gaseous NH3. In addition,
the sample calcined at 400°C, rather than the sample calci-
nated at 200°C, exhibited the highest UV light activity for
NH3 oxidation. The influence of calcination temperature
on the specific surface area (SSA), crystallinity, optical
properties, carbon species residual and also the acidity of
the samples was studied using XRD, Raman, BET, TG-
DSC, MS, UV-Vis, PL, and in situ DRIFTS methods. The
relationship between the physical and chemical properties
of samples and their photoactivities was carefully exam-
ined.

1 Experiment section

1.1 Catalyst preparation

TiO2 was prepared by HNO3 (AR) catalyzed hydroly-
sis of tetrabutyl titanate (Ti(OC4H9)4, CP) followed by
calcination at different temperatures. Typically, 17 g tetra-
butyl titanate was first added dropwise into 90 mL of
anhydrous ethanol and 20 mL of deionized water under
magnetic stirring. Then, 4 mL of 1 mol/L HNO3 was
added dropwise into the mixture. A white precipitate was
formed after the mixed solution was uniformly stirred
at 25°C for 3 hr, which was filtered, washed and then
dried at 110°C overnight. The dried powder was crushed
and calcined in air at different controlled temperatures
(150°C, 200°C, 300°C, 400°C, 500°C, 600°C for 5 hr. For
simplicity, the final catalysts are labeled as Tx, where x
represents the calcination temperature.

1.2 Characterization of catalysts

Powder X-ray diffraction (XRD) measurements of the
catalysts were carried out on a PANalytical X’Pert Pro
diffractometer using Cu Kα radiation (λ = 0.154056
nm) operating at 40 kV and 40 mA. The patterns were
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taken over the 2θ range from 10 to 90° with a step
size of 0.026°. Nitrogen adsorption-desorption isotherms
were obtained at –196°C using a Quantasorb-18 automatic
instrument (Quanta Chrome Instrument Co., USA). Ra-
man spectra were recorded on a UV resonance Raman
spectrometer (UVR DLPC-DL-03). The laser excitation
was 325 nm and the laser power was 40 mW. High-
resolution transmission electron microscopy (HRTEM)
images were obtained on a JEM-2010 electron microscope
(JEOL, Japan). TG-DSC was conducted on a METTLER
TOLEDO apparatus to characterize the weight change and
endothermal-exothermal status of the TiO2 catalysts. A
quadrupole mass spectrometer (MS) was used to record
the signals of H2O (m/z = 18) and CO2 (m/z = 44) evolved
during the heating process.

Diffuse-reflectance UV-Vis spectra were obtained un-
der ambient conditions on a UV-1700 (Shimadzu, Japan)
spectrometer. The range was 190–800 nm and the scan
rate was 120 nm/min. Photoluminescence (PL) spectra
were measured at room temperature on a fluorescence
spectrophotometer (F-4500, Hitachi, Japan). The exciting
wavelength was 300 nm; the scanning speed was 240
nm/min and the PMT voltage was 400 V. The widths
of the excitation and emission slits were 5.0 nm. In situ
DRIFTS of NH3 adsorption were performed on an FT-
IR spectrometer (Nicolet Nexus 670) equipped with a
Smart Collector and an MCT detector. The sample was
first pretreated at the calcination temperature in a flow of
20 vol% O2/N2 for 30 min and then cooled to 25◦C. The
samples were exposed to 695 mg/m3 NH3/N2 at a flow of
200 mL/min for 1 hr and then purged by N2 for 1 hr.

1.3 Catalytic evaluation of materials

The PCO of NH3 was carried out in a continuous flow
system. All reactions were performed in a black-colored
box with a 500-W ultraviolet high pressure mercury lamp.
The intensity of the UV light irradiation with the peak
wavelength at 365 nm on the catalysts’ surface was 0.46
mW/cm2. There was a fan above the lamp and circulated

cooling water under the vessel to control the reaction
temperature at 24◦C. 50 mg catalyst was first dispersed
in water and then the turbid solution was spread over a
round stainless steel sample dish with diameter of 5.5 cm.
The sample dish was held at 60◦C to fully remove water
and then cooled down to room temperature before use.
The reactant gas was 35 mg/m3 NH3, 20 vol% O2, and
balance N2 with a total flow rate of 200 mL/min, and
the relative humidity was 50%. The inlet and outlet gases
were monitored by an FT-IR spectrometer (Nicolet 380)
equipped with a 2 m path length gas cell.

2 Results and discussion

2.1 BET, phase structure and morphology

Nitrogen adsorption-desorption isotherms were measured
to determine the textural structures of TiO2 samples cal-
cined at various temperatures and the results are shown in
Table 1. It is clear that the calcination temperature had a
big influence on the textural structures. Without calcina-
tion, the sample had a SSA of 236.8 m2/g. With calcination
at 150 and 200◦C, the SSA was slightly enhanced and
the T200 sample presented the highest SSA (282.7 m2/g)
among this series of catalysts. However, further increasing
the temperature resulted in a dramatic decrease of SSA and
the T600 sample exhibited extremely low SSA (3.0 m2/g).
The structural parameters of P25 are also presented for
comparison.

XRD patterns of TiO2 catalysts calcined at various
temperatures were then measured to characterize the bulk
crystalline structures of the TiO2 samples and the results
are shown in Fig. 1. When the calcination temperatures
were not higher than 400◦C, anatase was the main phase,
with peaks at 2θ = 25.3°(101), 37.8°(004), 48.1°(200),
54.0°(105) and 55.1°(211) (JCPDS no. 21-1272). A small
brookite phase peak at 2θ = 30.8°(121) was also observed

Table 1 Structural parameters of the TiO2 samples calcined at various temperatures and the weight losses during the TG experiments

Sample SSA (m2/g) Pore diameter (nm) Pore volume (cc/g) Crystal size (nm) Weight loss 35–125°C Weight loss 125–500°C

Uncalcined 236.8 3.48 0.21 7.8a 1.47%h 14.22%h+c

T150 245.3 3.56 0.22 8.4a 1.43%h 11.57%h+c

T200 282.7 3.61 0.25 8.2a 1.59%h 10.52%h+c

T300 243.5 4.01 0.24 8.5a 1.40%h 5.46%h+c

T400 145.2 5.39 0.2 9.3a 0.90%h 2.33%h

T500 58.6 6.81 0.1 16.7a 0.83%h 1.30%h

35.6b

T600 3.0 9.25 0.01 53.7b 0.17%h 0
P25 59.1 11.8 0.17 20.8a / /

30.7b

a represents the size of anatase phase; b represents the size of rutile phase. h represents the water desorbed during the TG process; c represents the carbon
species lost during the TG process.
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Fig. 1 XRD patterns of the TiO2 catalysts calcined at various tempera-
tures.

(JCPDS no. 29-1360) in these samples. The phase transfor-
mation of TiO2 was observed at 500◦C. The rutile phase
appeared in the T500 sample and became the dominant
phase in the T600 sample with peaks at 2θ = 27.4°(110),
36.1°(101), 41.2°(111), 54.3°(211) (JCPDS no. 21-1276).
The rutile phase of TiO2 is normally formed above 600◦C
with complete transformation to rutile phase at 800◦C
(Porter et al., 1999). The present XRD patterns show that
the phase transformation of the synthesized TiO2 occurred
at 500◦C and was almost finished at 600◦C, which was
possibly caused by the carbon impurities introduced from
the alkoxide group of the TiO2 precursor (Figs. 4 and 5)
(Lettmann et al., 2001).

The crystal sizes of TiO2 were calculated from the half-
width of peaks using Scherrer’s equation (d = 0.9λ/β·cosθ).
The size of the anatase phase was calculated from the peak
at 2θ = 25.3° and the size of the rutile phase was calculated
from the peak at 2θ = 27.4°, and the data are presented in
Table 1. When the calcination temperature was not higher
than 300°C, the calcination showed little influence on the
anatase crystal size. The uncalcined, T150, T200, and T300
samples all presented very similar crystal sizes of around 8
nm. The calcination at 400°C resulted in a slight increase
of the anatase crystal size to 9.3 nm. In contrast, calcination
at 500 and 600°C dramatically increased the crystalline
sizes of both the anatase and rutile phase. The T500 sample
exhibited the anatase crystal size of 16.7 nm with rutile
crystal size of 35.6 nm, and the T600 sample showed the
rutile crystal size of 53.7 nm. The present results are in
good agreement with the reported measurements (Tseng et
al., 2006).

Raman spectra were measured to examine the surface
structure of TiO2 samples and the results are shown in
Fig. 2. The commercial anatase TiO2 was first measured
as a reference, and four characteristic peaks were observed
at around 146, 402, 521 and 636 cm−1 (Balachandran and
Eror, 1982). The uncalcined sample showed the typical
spectrum of anatase phase TiO2 with a slight red shift
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Fig. 2 Raman spectra of catalysts prepared at various temperatures.

and low peak intensities. When the catalysts were calcined
at 150, 200 and 300°C, the Raman features of the TiO2
samples are almost identical to that of the uncalcined
one. T400 and T500 samples still showed spectra similar
to anatase phase TiO2 but with increased peak intensities,
possibly due to the increase of the particle size during high
temperature calcination (Xue et al., 2012). In contrast, the
anatase peaks in the T600 sample sharply decreased and the
rutile peaks at 237, 445 and 619 cm−1 became dominant in
the spectrum (Balachandran and Eror, 1982).

HR-TEM images of the uncalcined, T200 and T400 sam-
ples were measured to examine the morphologies and the
images are shown in Fig. 3. The images indicated that the
catalysts consist of large numbers of particulates with a
size of around 10 nm. The particle size of the uncalcined
sample was similar to that of the T200 samples. In contrast,
T400 showed a slight larger particle size than the T200
samples due to the high temperature calcination, which
is consistent with the results of XRD. The three catalysts
all showed the same lattice spacing (0.35 nm), indicating
that all the catalysts showed exposure of {101} facets and
the calcination temperature did not induce change of the
crystal lattice and crystal facets. Moreover, no obvious
differences in the crystal parameters were observed among
these three catalysts.

2.2 TG-DSC-MS

TG-DSC analysis was performed to characterize the phase
transition of TiO2 and the amounts of impurities on the
catalyst surfaces. Figure 4 depicts the TG and DSC
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curves of the catalysts during heating in air. All the
samples showed small weight loss peaks from 35 to
125°C. When the temperature was further increased from
125°C to 500°C, substantial weight losses were observed
(Fig. 4a) accompanied with clear exothermic peaks for
the uncalcined, T150, T200, and T300 samples (Fig. 4b).
In contrast, T400, T500, and T600 samples presented much
lower weight loss. In addition, there were small exothermic
peaks between 500 and 750°C in all samples, indicating
the anatase-rutile transformation in this temperature range.
The effluent gases were monitored by MS during the TG
analysis and the MS results are shown in Fig. 5. Only water
was detected between 35 and 125°C, confirming that the
small weight loss was due to desorption of physisorbed
water molecules. In addition, CO2 and H2O signals simul-
taneously appeared between 125 and 500°C in the catalysts
calcined at temperatures lower than 400°C, indicating that
the impurities were mainly carbon species introduced from

the precursor tetrabutyl titanate. In contrast, no CO2 signal
appeared for T400, T500 and T600 samples, showing that
there was no carbon species left when the catalysts were
calcined above 400°C. The weight losses were roughly
calculated based on the TG results and the results are
also presented in Table 1. It is clear that the weight loss
decreased with the increase of the calcination temperature.

2.3 UV-Vis analysis

The TiO2 band gap plays an important role in the photo-
catalytic performance (Yu et al., 2007; He et al., 2011).
UV-Vis diffuse reflectance spectra were next measured
to investigate the optical properties of TiO2 prepared at
various temperatures and Fig. 6a gives the light absorbance
spectra. The uncalcined sample showed a slight absorption
in the visible light region above 400 nm. Annealing at 150
and 200°C dramatically enhanced the visible light absorp-
tion of T150 and T200, which should be ascribed to the
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Fig. 5 MS spectra of the catalysts calcined at various temperatures
during the TG analysis.

presence of residual carbonaceous species on the catalyst
surfaces (Tseng et al., 2006). However, further increasing
the calcination temperature to 300 and 400°C decreased
the visible light absorption. The T300 sample presented a
much lower intensity of visible light absorption and the
T400 sample showed no response to visible light due to
the gradual removal of carbonaceous species with high-
temperature annealing. As the calcination temperatures
were further increased to 500 and 600◦, the samples
responded to the visible light again, which is attributed
to the appearance of rutile phase TiO2 (Hoffmann et al.,
1995; Góska et al., 2008; Wang et al., 2012). The plots of
the transformed Kubelka-Munk functions as a function of
light energy are shown in Fig. 6b and the inset shows the

band gap energies of the catalysts roughly calculated based
on the plots. Among the series of catalysts, the T200 sample
showed the lowest band-gap energy of 2.78 eV, while the
T400 presented the highest band-gap energy of 3.14 eV,
similar to that of the commercial catalyst P25 (3.19 eV).

2.4 Photoluminescence analysis

Photoluminescence (PL) spectra of catalysts calcined at
various temperatures were next measured to investigate the
efficiency of charge carrier trapping, migration, transfer-
ring and the separation of photogenerated electron-hole
pairs (Shi et al., 2007). A weaker PL emission signal
is commonly indicative of higher photocatalytic activity
(Chen et al., 2008; He et al., 2011). As depicted in Fig. 7,
several emission bands were observed in the PL spectra.
The broad emission band at around 400 nm is attributed
to the emission of the band gap transition (Lü et al.,
2012). The other five peaks ranging from 440 nm to 500
nm are due to surface oxygen vacancies, impurities and
defects (Yu et al., 2011). Overall, the sequence of the PL
intensities was in the order of P25 > T600 > T500 > T400
> T300 > T150 > T200. The commercial P25 showed the
highest PL intensity among all samples. The carbon-free
samples (T400, T500 and T600) demonstrated slightly lower
PL signals than that of the commercial P25. In contrast, the
carbon-containing samples (T150, T200 and T300) presented
very low emission intensities and T200 showed the lowest
signal, indicating that the residual carbon species signifi-
cantly reduced the recombination rate of the photo-induced
electrons and holes in the catalysts (Yu et al., 2011).

2.5 Activity test

The prepared catalysts were first evaluated for the PCO of
NH3 under visible light. All as-prepared samples showed
no measurable activity for the photocatalytic oxidation of
gaseous NH3. The catalysts were then tested under UV
light (365 nm). Figure 8a presents the NH3 conversion
under UV light with time on-stream over all catalysts.
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at different temperatures (inset is the band gap calculated).
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Fig. 7 Photoluminescence spectra of the catalysts calcined at various
temperatures.

The calcination temperature showed a big influence on
the activity. The photoactivity of TiO2 calcined at various
temperatures was in the order of: T400 > P25 > T500 > T300
> T200 > T150 > T600. The T150 and T200 samples showed
very poor activity and only about 7% NH3 conversion was
obtained. Increasing the calcination to 300°C enhanced the
NH3 conversion to about 15%. T400 presented the highest
NH3 conversion (about 43%) among the catalysts. Fur-
ther increasing the calcination temperature to 500°C and
600°C resulted in a significant drop in NH3 conversion. In
particular, T600 showed almost no photoactivity. In order
to clearly show the influence of calcination temperature
on activity, NH3 conversions at 2 hr reaction time were
selected and compared with each other in Fig. 8b. It is
clear that T400 exhibits the best photocatalytic activity,
even much better than commercial P25.

The photoactivity of TiO2 was reported to be closely
related to a combination of factors such as the SSA,
pore volume, crystallinity, band gap energy and also the
electron-hole recombination, etc. (Zhang et al., 2000). In
the series of samples, the carbon-containing samples (T150,

T200 and T300), especially the T200 sample, showed very
high SSA (Table 1), good crystallinity (Fig. 1), strong
visible light absorption (Fig. 6a), low band-gap energy
(Fig. 6b) and also low recombination rate of electron and
hole pairs (Fig. 7), therefore these catalysts should have
high visible light activity for NH3 oxidation. Previously,
T150, T200 and T300 samples (prepared by the same method)
have demonstrated high activity for NO oxidation under
visible-light illumination and the T200 sample was the best
one (Tseng et al., 2006). However, in this study, the carbon-
containing samples showed no visible light activity for
the PCO of NH3. In addition, as shown in Fig. 8, these
samples also showed very low activities under UV-light
irradiation. In contrast, although T400, which is a carbon-
free sample with moderate SSA, the widest band gap
(3.14 eV) and also high PL intensity, was not active under
visible-light, it however demonstrated the highest NH3
removal performance under UV-light among the series
of catalysts. Therefore, the above-mentioned factors such
as SSA, band gap and electron-hole recombination, etc.,
played no determining role in the photocatalytic oxidation
of gaseous NH3 over these catalysts. There must be another
more important factor affecting the PCO of NH3.

2.6 In situ DRIFTS

Surface acidity is one of the factors which influence the
photoactivity of TiO2 (Choi et al., 2007; Yamazoe et al.,
2007a). Since NH3 is an alkaline gas, the surface acidity
of the catalyst should have much more effect on the PCO
of NH3 than of an acidic gas such as NO. Therefore,
in situ DRIFTS analyses of NH3-adsorbed catalysts were
further carried out to probe the nature of the Lewis and
Brønsted acid sites. Figure 9 shows the in situ DRIFTS
spectra of NH3 adsorption over the series of catalysts.
The spectra displayed NH3 adsorption bands at around
1163, 1223, 1460, 1598, 1682 and 1828 cm−1. The bands
at 1163, 1223 and 1598 cm−1 were assigned to NH3
coordinated to Lewis acid sites (Larrubia et al., 2005;
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Liu and He, 2010) and the bands at around 1460 and
1682 cm−1 were assigned to NH+4 coordinated to Brønsted
acid sites (Topsoe, 1994; Liu and He, 2010). The peak
at 1828 cm−1 was due to physisorbed NH3. From the
comparison among the spectra, we can see that the cal-
cination temperature demonstrated a significant influence
on the NH3 adsorption. The T150 sample only presented a
physisorbed NH3 peak and no clear chemically-adsorbed
NH3 peaks appeared. The T200 sample showed very weak
chemical NH3 adsorption peaks at 1163, 1223, 1460 and
1598 cm−1 alongside the physisorbed NH3 peak at 1828
cm−1. Increasing the calcination temperature to 300 and
400°C gradually suppressed the physical NH3 adsorption,
but dramatically improved the chemical NH3 adsorption
on both the Lewis acid and Brønsted acid sites. The T400
sample presented the largest NH3 adsorption peaks among
the series of catalysts, especially the adsorption peaks
over the Brønsted acid sites at around 1460 cm−1. Further
increasing the temperature to 500°C resulted in a decrease
of chemical NH3 adsorption possibly due to the decease
of the SSA. In addition, the commercial P25 showed a
similar spectrum to that of the T500 sample. These results
show that the samples calcined in the low temperature
range (<300°C) contained a very low amount of acid sites
on the surface, which could be due to covering of the
sites by residual carbon species. Increasing the calcination
temperature reduces the carbon contents and then exposes
the acid sites for the NH3 adsorption and activation.

3 Conclusions

In situ DRIFTS results of NH3 desorption combined with
the activity test results revealed that the activities of

samples prepared at various temperatures for PCO of NH3
were closely related to the surface acidity, and especially
to the amount of Brønsted acid sites. The T200 sample
had very high SSA, good crystallinity, strong visible light
absorption, and also low PL intensity. However, this cata-
lyst had few acid sites for NH3 adsorption and activation,
therefore showing no visible light activity for the PCO of
NH3. The T400 sample had moderate SSA, the widest band
gap and also high PL intensity, but this sample possessed
the highest number of acid sites, therefore demonstrating
the highest NH3 removal performance under UV light
among the series of catalysts.

In summary, the calcination temperature had a large
effect on the PCO of NH3 by changing the SSA, crys-
tallinity, carbon residuals, band gap, PL emission and
also the surface acidity of the TiO2. The carbon residuals
account for their visible light adsorption and low band gap.
However, the surface acidity plays a determining role in
the PCO of NH3 under both visible and UV light. The T200
sample, with its very low band gap and low PL intensity,
showed very low visible and UV light activity for NH3
oxidation due to its very low number of acid sites. The
T400 sample, which had the highest number of acid sites,
exhibited the highest NH3 removal performance under UV
light, even better than the commercial P25.
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