Catalysis Science & Technology

PAPER

Cite this: Catal. Sci. Technol., 2013, 3, 2699

Novel MnWO_x catalyst with remarkable performance for low temperature NH₃-SCR of NO_x $^{+}$

Fudong Liu, Wenpo Shan, Zhihua Lian, Lijuan Xie, Weiwei Yang and Hong He*

A novel W promoted MnO_x catalyst ($MnWO_x$) was used for the selective catalytic reduction (SCR) of NO_x with NH_3 at low temperatures, with high $deNO_x$ efficiency from 60 to 250 °C under relatively high space velocity. The $MnWO_x$ catalyst showed a unique core–shell structure with Mn_3O_4 covered by Mn_5O_8 while Mn^{4+} species at the outer surface served as a real active phase for NH_3 -SCR. The W doping resulted in the smaller particle size of MnO_x active phase, increased the surface acidity and facilitated the NO/NH_3 oxidation, thus enhancing low temperature $deNO_x$ efficiency by promoting both Langmuir–Hinshelwood and Eley–Rideal reaction pathways. This novel catalyst is promising to be used in the $deNO_x$ process for flue gas after dust removal and desulfurization.

1. Introduction

Received 10th May 2013, Accepted 2nd July 2013

DOI: 10.1039/c3cy00326d

www.rsc.org/catalysis

NO_x are major air pollutants endangering the eco-environment and human health, which are strictly controlled according to increasingly stringent legislation worldwide. Selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) is a well established technique for the deNO_x process of stationary sources at medium or high temperatures (>350 °C), using vanadium-based materials with biological toxicity as catalysts.¹ However, NH₃-SCR of NO_x at low temperatures (<250 °C) is still a challenging technique for the deNO_r process of coal-fired power plants or other industrial boilers after desulfurization at low exhaust temperature.² For the purpose of energy conservation and emission reduction, low temperature NH₃-SCR is worth studying and applying due to its high deNO_x efficiency below 250 °C and convenience for installation of a catalytic converter without carrying out reconstruction of the present boilers. Therefore, the development of novel and efficient low temperature NH₃-SCR catalysts is a research hotspot in environmental catalysis.

Among the reported vanadium-free catalysts, Mn-based catalysts (*e.g.* MnO_x, MnO_x/TiO₂, MnO_x-CeO_x *etc.*) usually show excellent SCR activity even below 100 °C.³⁻⁹ Compared to Fe or Cu modified zeolites such as Fe-ZSM-5,¹⁰⁻¹² Fe-BEA,^{13,14} Cu-ZSM-5¹⁵ and Cu-SSZ-13 catalysts¹⁶⁻¹⁸ usually used in the deNO_x process in diesel engines, the low temperature activity of Mn-based oxide catalysts is more advantageous to the application for NH₃-SCR

E-mail: honghe@rcees.ac.cn; Fax: +86 10 62849123; Tel: +86 10 62849123

of NO_x from stationary sources, and the cost of using Mn-based oxide materials instead of zeolite materials is much lower. Tungsten is a commonly used promoter of SCR catalysts for stabilizing the active phase or supplying extra acid sites, such as for V₂O₅–WO₃/TiO₂,¹⁹ CuO_x/WO_x–ZrO_x,^{20,21} CeO₂–WO₃/TiO₂²² and CeWO_x²³ catalysts. Using a combination of the advantages of Mn species and W species, in this study, a novel MnWO_x catalyst is reported for low temperature NH₃-SCR reaction with high deNO_x efficiency from 60 to 250 °C. The bulk and surface structures of this catalyst are characterized using different methods. The promotional effect of W species and the SCR reaction mechanism over the catalyst are discussed. The catalyst shows promise for low temperature deNO_x of stationary flue gases after dust removal and deep desulfurization.

2. Experimental

2.1 Catalyst preparation and activity test

 $Mn_aW_bO_x$ catalysts (a/b = 2:1, 1:1 and 1:2) were prepared by a co-precipitation method using $Mn(NO_3)_2$, $(NH_4)_6H_2W_{12}O_{40}\cdot 5H_2O$ as precursors and 25 wt% $NH_3\cdot H_2O$ as precipitator. First, a mixed aqueous solution of $Mn(NO_3)_2$ and $(NH_4)_6H_2W_{12}O_{40}\cdot 5H_2O$ with known concentrations using oxalic acid as the co-solvent was prepared. Then, 25 wt% $NH_3\cdot H_2O$ used as the precipitator was slowly added into the mixed solution until the pH rose to 10. Afterwards, the resulting precipitate was filtered, washed, dried at 100 °C for 12 h and finally calcined in air at 400 °C for 6 h. The pristine MnO_x was prepared using the above-mentioned method, while the pristine WO_x sample was obtained by direct decomposition of $(NH_4)_6H_2W_{12}O_{40}\cdot 5H_2O$ in air at 600 °C for 3 h. After calcination, all powder samples were pressed, crushed and sieved to 40–60 mesh for activity test.

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, P.R. China.

 $[\]dagger$ Electronic supplementary information (ESI) available: See DOI: 10.1039/ c3cy00326d

The steady state NH₃-SCR and NO/NH₃ oxidation activity over Mn_aW_bO_x catalysts was tested in a fixed-bed quartz tube reactor, and the reaction conditions were as follows: 40–60 mesh catalyst, catalyst volume of 0.6 ml (corresponding to 0.5–0.6 g catalyst by weight), 500 ppm NO, 500 ppm NH₃, 5 vol% O₂, 5 vol% H₂O (when used) and N₂ balance; 500–2000 ml min⁻¹ flow rate and gas hourly space velocity (GHSV) of 50 000–200 000 h⁻¹. The effluent gas including NO, NH₃, N₂O and NO₂ was analyzed using an FTIR spectrometer (Nicolet Nexus 670) equipped with a low volume multiple-path gas cell (2 m). The NO_x conversion and N₂ selectivity were calculated according to the formulas described in our previous study.²⁴

2.2 Characterization

The N_2 physisorption isotherms were measured at 77 K on a Quantachrome Quadrasorb SI-MP. Prior to N_2 physisorption, the catalysts were degassed at 300 °C for 4 h. Surface areas were determined by BET equation in 0.05–0.35 partial pressure range. Pore volumes and average pore diameters were determined by BJH method from the desorption branches of isotherms.

The XRD measurements of $Mn_aW_bO_x$ catalysts were carried out on PANalytical X'Pert Pro Diffractometer with Cu K_{α} radiation source ($\lambda = 0.15406$ nm). The data of 2θ from 10 to 80° were collected at 8° min⁻¹ with step size of 0.07° .

The XAFS of Mn-K edge in $Mn_aW_bO_x$ catalysts were measured in transmission mode on a BL14W1 beamline, Shanghai Synchrotron Radiation Facility (SSRF) and BL-12C beamline, Photon Factory, KEK, Japan. Data were analyzed using IFeffit1.2.11.²⁵ XANES were normalized with edge height and then the firstorder derivatives were taken to compare the variation of absorption edge energies. EXAFS oscillation $\chi(k)$ was extracted using spline smoothing with a Cook–Sayers criterion,²⁶ and the filtered k^3 -weighted $\chi(k)$ was Fourier transformed into *R* space in the *k* range of 2.5–12 Å⁻¹. In the curve fitting step, the possible backscattering amplitude and phase shift were calculated using FEFF8.4.²⁷

Raman spectra were collected at room temperature on a Spex 1877 D triplemate spectrograph with 2 cm⁻¹ resolution. A 532 nm DPSS diode-pump solid semiconductor laser was used as the excitation source with power output of *ca.* 30 mW.

TEM images of MnO_x and $MnWO_x$ catalysts were obtained on an H-7500 Transmission Electron Microscopy (Hitachi) with 80 000 V and 400–500 k magnification.

The XPS of $Mn_aW_bO_x$ catalysts was recorded on Scanning X-ray Microprobe (PHI Quantera, ULVAC-PHI, Inc.) using Al K_{α} radiation. Binding energies of Mn 2p and O 1s were calibrated using C 1s peak (BE = 284.8 eV).

The *in situ* DRIFTS were performed on an FTIR spectrometer (Nicolet Nexus 670) equipped with a smart collector and an MCT/A detector. The sample was pretreated at 400 °C for 0.5 h in 20 vol% O_2/N_2 and then cooled down to 100 °C. The background spectrum was collected in flowing N_2 and automatically subtracted from the sample spectrum. The reaction conditions were as follows: 500 ppm NH₃, 500 ppm NO, 5 vol% O_2 , N_2 balance and 300 ml min⁻¹ flow rate. For each sample, the NH₃/(NO + O_2) adsorption time was controlled as 30 min.

Afterwards, the samples were purged by N₂ for another 30 min until the infrared signals were stabilized. Finally, $(NO + O_2)/NH_3$ was introduced into the gas chamber to react with the preadsorbed NH₃/NO_x species. All spectra were recorded by accumulating 100 scans with 4 cm⁻¹ resolution.

3. Results and discussion

3.1 NH₃-SCR activity

As shown in Fig. 1, the pristine MnO_x prepared by a precipitation method only showed a narrow operation temperature window with over 80% NO_r conversion from 175 to 300 $^{\circ}$ C. When the Mn:W molar ratio was controlled at 2:1, the low temperature SCR activity was significantly enhanced with total NO_x conversion at 100 °C. Further increasing the Mn:W molar ratio to 1:1 resulted in the higher SCR activity at low temperatures, and the 100% NO_x conversion could be obtained at as low as 70 $^{\circ}$ C. Besides, the operation temperature window of MnWO_x catalyst was much wider than that of MnO_x , with the NO_x conversion above 80% from 60 to 250 °C. However, further increasing the Mn: W molar ratio to 1:2 led to the decline of low temperature SCR activity to a certain extent. Therefore, the optimal Mn:W molar ratio in $Mn_aW_bO_x$ catalysts should be 1:1 in the preparation process. As for the pristine WO_r, there was no NO_r conversion observed at all over the whole temperature range, suggesting that the W species played only a role as catalyst promoter rather than active center for NH₃-SCR reaction. The NH₃-SCR activity results suggest that strong interaction between Mn and W species possibly exists in $Mn_aW_bO_r$ catalysts in the preparation process and this effect is the strongest in the MnWO_x catalyst.

3.2 Influence of GHSV and H₂O

The NH₃-SCR activity over MnWO_x catalyst was also tested under different GHSVs. As shown in Fig. 2, the NO_x conversion at low temperatures decreased to a certain extent monotonically with the increase of GHSV from 50 000 to 200 000 h⁻¹, yet the NO_x conversion above 200 °C was not obviously affected.

Fig. 1 NO_x conversion over $Mn_aW_bO_x$ catalysts in $NH_3\mbox{-}SCR$ reaction at GHSV of 50 000 $h^{-1}.$

Fig. 2 NO_x conversion over MnWO_x catalyst in NH₃-SCR reaction under different GHSVs.

Even under the GHSV of 200 000 h⁻¹, the NO_x conversion could still be maintained above 80% from 150 to 250 °C. In practical use, the high durability of this MnWO_x catalyst to space velocity is beneficial to reduce the volume of SCR catalytic converter for saving installation space. Furthermore, the stability tests in NH₃-SCR reaction (Fig. S1(A)†) showed that the MnWO_x catalyst is highly stable for deNO_x at low temperatures, which is also advantageous to the practical use.

After deSO_x using wet flue gas desulphurization (WFGD) method, the flue gas usually contains a certain fraction of water vapor, which may deactivate the SCR catalysts especially at low temperatures. For example, over V₂O₅/AC, MnO_x/Al₂O₃, Fe_{0.75}Mn_{0.25}TiO_x catalysts,²⁸⁻³⁰ the inhibition effect of H₂O was clearly observed possibly due to the blocking of some active sites for activating NH₃ or NO_x. As shown in Fig. 3, the presence of 5 vol% H₂O also showed apparent inhibition effect on NH₃-SCR activity of MnWO_x catalyst below 175 °C, with the temperature point achieving 100% NO_x conversion shifted *ca.* 100 °C towards high temperature range. However, comparing with the state-of-art

Fig. 3 NO_x conversion over MnWO_x catalyst in NH₃-SCR reaction with/without 5 vol% H₂O at GHSV of 50 000 h^{-1} (inset: N₂ selectivity).

NH₃-SCR catalysts with excellent low temperature activity such as Cu-ZSM-5^{31,32} and Cu-SSZ-13,^{33,34} the low temperature deNO_r efficiency from 100 to 200 °C over MnWO_r catalyst still showed some advantages in the presence of similar amount of H₂O. Besides, the presence of H₂O positively influenced the N₂ selectivity over MnWO_x catalyst (inset Fig. 3). In the absence of H₂O, the N₂ selectivity decreased sharply with increasing reaction temperature, which still needs to be improved in future studies by surface modification or promoter doping. In the presence of H₂O, the N₂ selectivity was greatly enhanced, *e.g.* the N₂ selectivity was increased from 60% to 90% at *ca.* 150 $^{\circ}$ C. This positive effect of H₂O on the N₂ selectivity is attributed to inhibition of NH₃ unselective oxidation by H₂O and is beneficial for practical use because N₂O is a potent greenhouse gas with restrictions placed on its emissions. Furthermore, as the results shown in Fig. S1(B),[†] even in the presence of water vapor, this MnWO_x catalyst can still have long term stability at 150 °C with a reversible deactivation effect by H₂O. However, after the NH₃-SCR activity test with H₂O, more ammonium nitrate species might form on the catalyst surface which could block some pores or active sites for NH₃/NO_r adsorption, resulting in a decrease in NO_x conversion below 125 °C over MnWO_x catalyst even after stopping the H₂O inlet (as shown in Fig. 3). Such phenomenon should be carefully considered for the practical use of this catalyst system.

3.3 NO oxidation and NH₃ oxidation

For low temperature NH_3 -SCR, NO oxidation to NO_2 is very important to promote $deNO_x$ efficiency by accelerating the "fast SCR" process. If an SCR catalyst can produce NO_2 *in situ* effectively under NH_3 -SCR conditions, the low temperature SCR activity can be outstanding.³⁵ To understand in-depth the promotional effects of WO_x addition into MnO_x , separate NO oxidation experiments were carried out. As shown in Fig. 4A, the WO_x sample showed no NO oxidation activity over the whole temperature range, while the relatively higher NO conversion to NO_2 could be achieved over MnO_x . Over the $MnWO_x$ catalyst, much higher NO conversion to

Fig. 4 (A) NO conversion and (B) NH_3 conversion in separate NO and NH_3 oxidation reactions over $MnWO_{x_1}$ MnO_x and WO_x at GHSV of 50 000 h⁻¹.

 NO_2 could be obtained than with MnO_x over the whole temperature range (*e.g.* 50% vs. 20% at 150 °C), which is consistent with the SCR performance. These results clearly indicate that the enhancement of low temperature SCR activity of MnO_x catalyst by WO_x addition is strongly associated with facilitation of a "fast SCR" process.

For the promotion of low temperature activity of NH₃-SCR catalyst, the activation of NH₃ at low temperatures is also very important. Therefore, separate NH₃ oxidation experiments were also carried out. As shown in Fig. 4B, the WO_x sample showed no NH₃ oxidation activity over the whole temperature range. Over MnO_x catalyst, the light-off temperature with 50% conversion for NH₃ oxidation was ca. 180 °C and the total conversion of NH₃ could be achieved at *ca.* 250 °C. After WO_x doping, NH₃ oxidation activity of MnWO_x catalyst was greatly enhanced, with the light-off temperature shifted to ca. 150 °C and the total conversion temperature shifted to ca. 200 °C. These results indicate that the W addition into MnO_r can obviously enhance the activation of NH₃ or NH₄⁺ adsorbed species on MnWO_x catalyst surface and promote their reaction towards NO_x to produce N₂, which will be discussed in detail in the subsequent in situ DRIFTS experiments. Considering the reaction products from NH3 oxidation over MnWOx catalyst, only the N2O by-product was detected (i.e. 65% selectivity to N₂ and 35% selectivity to N_2O at 150 °C), indicating that the relatively low N_2 selectivity in NH₃-SCR reaction over MnWO_x catalyst might be partially owing to the unselective oxidation of NH₃. In further study, the modification of this catalyst to inhibit the unselective NH₃ oxidation process would be an efficient way to improve the N₂ selectivity in NH₃-SCR reaction.

3.4 N₂ physisorption

As shown in Table 1, for pristine MnO_x , the corresponding textural parameters are as follows: BET surface area of 19.3 m² g⁻¹, BJH desorption pore volume of 0.13 cm³ g⁻¹ and BJH desorption pore diameter of 1.9 nm. The pristine WO_x sample showed rather small surface area (0.01 m² g⁻¹), pore volume (0.01 cm³ g⁻¹) and relatively larger pore diameter (2.5 nm). The doping of WO_x into MnO_x could significantly increase the surface area and pore volume of $Mn_aW_bO_x$ catalysts, and the pore diameter was also increased to a certain extent probably due to the formation of extra secondary piled pores. It is noteworthy that the $MnWO_x$ catalyst possessed the largest surface area (75.7 m² g⁻¹) and pore volume (0.27 cm³ g⁻¹) possibly owing to the strongest interaction between Mn and W species in the preparation process, which is in good agreement with its highest NH₃-SCR performance.

Table 1 Structural parameters of $Mn_aW_bO_x$ catalysts derived from N_2 physisorption results

Samples	$\frac{S_{\rm BET}}{\left[{\rm m^2~g^{-1}}\right]}$	BJH desorption pore volume [cm ³ g ⁻¹]	BJH desorption pore diameter [nm]
MnO _x	19.3	0.13	1.9
$Mn_2W_1O_x$	48.0	0.23	3.8
MnWO _x	75.7	0.27	12.6
$Mn_1W_2O_x$	53.2	0.26	12.5
WO _x	0.01	0.01	2.5

Even after normalization, the NO_x conversion per surface area over MnWO_x catalyst is still higher than that over MnO_x, Mn₂W₁O_x and Mn₁W₂O_x at 50 °C (*i.e.* 0.28, 0.32, 0.52 and 0.38% g m⁻² over MnO_x, Mn₂W₁O_x, MnWO_x and Mn₁W₂O_x, respectively), indicating that besides the increase of surface area by W doping, the interaction between Mn and W species is also important for the promotion of low temperature deNO_x activity, which will be discussed later in the following sections.

3.5 Bulk structure characterized by XRD and XAFS

The pristine MnO_x, as presented in Fig. 5, exhibited a mixed XRD pattern of Mn₃O₄ and Mn₅O₈. It is noteworthy that the average valence of Mn species is ca. 2.67 in Mn₃O₄ and ca. 3.2 in Mn_5O_8 , therefore the Mn species in MnO_x should have an intermediate average valence between 2.67 and 3.2. If this valence value could be determined by another method, the relative molar ratio of Mn₃O₄ and Mn₅O₈ could actually be calculated. After doping by WO_x, the intensity of the diffraction peaks of Mn₃O₄ and Mn₅O₈ decreased obviously, indicating the smaller particle size of MnO_x. For example, the full widths at half maximum (FWHMs) of (2, 0, 0)peak in Mn_3O_4 at $2\theta = ca$. 18.0° for MnO_x , $Mn_2W_1O_x$, $MnWO_x$ and $Mn_1W_2O_r$ are 0.31, 0.43, 0.53 and 0.45, respectively, and the FWHMs of (2, 0, 1) peak in Mn_5O_8 at $2\theta = ca. 21.6^{\circ}$ for corresponding samples are 0.23, 0.29, 0.50 and 0.40, respectively. These results indicate that the WO_x species in Mn_aW_bO_x catalysts showed a strong inhibition effect on the crystallization of the MnO_x phase, which is beneficial to the increase of surface area plus pore volume, the decrease of pore diameter and thus the enhancement of SCR activity. For the WO_x sample, only a well crystallized WO₃ phase with sharp and intense diffraction peaks was observed.

The XAFS of Mn-K edge were measured using Mn foil, MnO, Mn₃O₄, Mn₂O₃ and MnO₂ as reference samples. As shown in Fig. 6A, not only the pre-edge peaks but also the post-edge regions of Mn-K XANES in Mn_aW_bO_x catalysts were quite similar to that in MnO_x. These results imply that although the particle size of MnO_x phase judged from XRD results was obviously decreased after WO_x doping, the crystal structure of Mn_aW_bO_x catalysts remained unchanged. Due to the mixture state of Mn species in MnO_x and

Fig. 5 Power XRD of Mn_aW_bO_x catalysts.

Fig. 6 (A) XANES, (B) first-order derivatives of XANES and (C) Fourier transformed filtered k^3 -weighted EXAFS oscillations of Mn-K edge in Mn_aW_bO_x catalysts.

 $Mn_aW_bO_x$ catalysts (*i.e.* Mn_3O_4 and Mn_5O_8), all the catalysts showed discrepant XANES patterns compared to the reference samples. To further determine the average valence of Mn species in $Mn_aW_bO_x$ catalysts, the first-order derivates of Mn-K XANES were taken. As shown in Fig. 6B, the absorption edge energy of Mn species (*i.e.* the corresponding energy correlative to the maximum of first-order derivates) in $Mn_aW_bO_x$ catalysts was 6548.1 eV, which was identical to that in Mn_2O_3 reference. Therefore, the average valence of Mn species in $Mn_aW_bO_x$ catalysts is +3, based on which the molar ratio of Mn_3O_4 and Mn_5O_8 can be calculated as 1:1.

Fig. 6C shows the Fourier transformed filtered k^3 -weighted EXAFS oscillations into *R* space of Mn-K edge, and Table 2 shows the curve fitting results. Also due to the mixture state of Mn species in Mn_aW_bO_x catalysts, the coordination shells of Mn–O and Mn–O–Mn in our catalysts were different to a certain extent when compared with the reference samples. Generally, the peak intensity of the second coordination shells in metal oxides can be used as a crystallinity indicator of target materials. The lower peak intensity of the second coordination shells,

Table 2 Curve fitting results of Mn K-edge EXAFS in Mn _a W _b O _x catalysts							
Sample	Shell	CN^a	R^{b} (Å)	DW^{c} (Å)	R factor (%)		
MnO _x	Mn-O Mn-Mn ₁ Mn-Mn ₂	4.3 3.1 3.1	1.91 2.82 3.45	0.054 0.069 0.009	4.7		
Mn ₂ W ₁ O _x	Mn-O Mn-Mn ₁ Mn-Mn ₂	4.1 2.8 2.3	1.90 2.82 3.45	0.063 0.095 0.069	3.3		
MnWO _x	Mn-O Mn-Mn ₁ Mn-Mn ₂	3.8 2.5 1.7	1.89 2.82 3.45	0.054 0.070 0.014	2.4		
$Mn_1W_2O_x$	Mn-O Mn-Mn ₁ Mn-Mn ₂	3.8 3.1 2.3	$1.90 \\ 2.82 \\ 3.44$	0.055 0.076 0.010	1.5		

 a CN: coordination number. b R: bond distance. c DW: Debye–Waller factor.

the poorer crystallization degree of the sample. Accordingly, it is obvious that the MnO_x sample showed much poorer crystallization degree than the Mn-containing references, with more unsaturated catalytically active sites. After curve fitting, the MnO_x sample was confirmed to possess Mn-O, Mn-O-Mn₁ and Mn-O-Mn₂ coordination shells at ca. 1.91, 2.82 and 3.45 Å with the coordination numbers being 4.3, 3.1, and 3.1, respectively. The introduction of W species into MnO_r further lowered the peak intensity of Mn-O-Mn coordination shells, and the coordination numbers of Mn-O-Mn1 and Mn-O-Mn2 in MnaWbOx catalysts were correspondingly decreased to a certain extent, confirming again the inhibition effect of WO_x on the crystallization of MnO_x phase. The $MnWO_x$ catalyst with the best NH₃-SCR performance showed the smallest coordination numbers for Mn-O-Mn, suggesting that this catalyst possessed the most abundant surface defects, which was beneficial to the adsorption and activation of reactants for the $deNO_x$ process.

3.6 Surface structure characterized by Raman spectra and XPS

Comparing with XRD and XAFS, the Raman spectra and XPS are more surface sensitive for the characterization of $Mn_aW_bO_x$ catalysts. As shown in Fig. 7, pristine MnO_x presented typical Raman shifts ascribed to Mn_5O_8 (A_o mode at 647 cm⁻¹, and non-assignable Raman-active modes at 267, 478, 537, 578, 617 cm⁻¹),^{36,37} while no bands attributed to Mn₃O₄ were observed, indicating that the MnO_x probably exhibits a core-shell structure with the Mn_3O_4 phase covered by Mn_5O_8 phase. The W addition into MnO_x decreased the band intensity to a certain extent, suggesting a smaller particle size of Mn₅O₈ on surface layers. Besides, no Raman shifts ascribed to WO₃ were observed for $Mn_aW_bO_x$ catalysts, such as W-O-W bending modes at 272, 323 cm⁻¹ (F_{2g}), W–O stretching mode at 719 cm⁻¹ (A_{1g}) and W–O bending mode at 819 cm⁻¹ (E_g).³⁸⁻⁴⁰ These results combined with XRD results clearly suggest that the W species in $Mn_aW_bO_x$ catalysts is mainly present in a highly dispersed state. To better confirm the formation of core-shell structure in MnO_x and MnWO_x catalysts, the TEM images were measured and the results are shown in Fig. 8. As we can clearly see, both MnO_r and MnWO_r

Fig. 7 Raman spectra of Mn_aW_bO_x catalysts

Fig. 8 TEM images of (A) MnO_x and (B) MnWO_x catalysts.

catalysts exhibited unique core–shell structures with legible cores and shells with relatively high and low density, respectively, and the MnWO_x catalyst possessed much smaller particle size than pristine MnO_x sample, which are totally in good agreement with the conclusions drawn from XRD, XAFS and Raman spectra results as we mentioned above.

As shown in Fig. 9A, two XPS bands of Mn 2p at *ca.* 642.1 and 653.6 eV were observed for MnO_x, corresponding to the photoelectron peaks of Mn 2p_{3/2} and Mn 2p_{1/2}, respectively. These binding energies are quite close to those of Mn 2p_{3/2} and Mn $2p_{1/2}$ on MnO₂, in which the Mn species is in the valence state of +4.^{7,41} It is reported that Mn₅O₈ (with compositional formula Mn₂²⁺Mn₃⁴⁺O₈) is probably the only binary Mn oxide that is known to have a layered structure, in which the 2D octahedral sheets of $[Mn_3^{4+}O_8]^{4-}$ consisting of Mn⁴⁺ ions are separated by

Fig. 9 XPS of (A) Mn 2p and (B) O 1s on Mn_aW_bO_x catalysts.

Mn²⁺ layers and the outer surfaces are mainly composed of Mn⁴⁺ species.³⁶ Therefore, it is reasonable to deduce that the apparent valence of Mn species on MnO_x detected by XPS was close to that of MnO₂, higher than the ideal value of Mn₅O₈ (+3.2). To better confirm this point of view, the Mn 2p XPS peaks were deconvoluted by searching for the optimal combination of Gaussian sub-bands with correlation coefficients (r^2) above 0.99 using PeakFit4.12. As we can clearly see, besides the Mn^{2+} species with Mn $2p_{3/2}$ peak at 641.5 eV and Mn $2p_{1/2}$ peak at 653.1 eV along with some Mn^{n+} species (probably manganese nitrate and some other high-valent Mn^{6+/7+} species) with Mn $2p_{3/2}$ peak in the range of 645.3–646.1 eV and Mn $2p_{1/2}$ peak in the range of 655.2-657.1 eV, the dominant Mn species on the catalyst surface was indeed Mn⁴⁺ with Mn 2p_{3/2} peak at 642.1 eV and Mn $2p_{1/2}$ peak at 653.6 eV.⁷ In other words, the main Mn species active for NH₃-SCR in this study was in the valence state of +4, similar as the conclusion drawn by Thirupathi and Smirniotis on their Mn-Ni/TiO₂ catalysts,⁷ while the Mn²⁺ species in Mn₅O₈ and the inner Mn₃O₄ phase were possibly only present as "spectator components". Under NH3-SCR atmosphere, the Mn⁴⁺ species on outer surface might participate into the redox process between Mn⁴⁺ and Mn³⁺ for the activation of NH₃ or NO_x. After W doping, the photoelectron peaks of Mn 2p showed some increase in intensity suggesting the higher surface concentration of Mn⁴⁺ species induced by smaller particle size of MnO_r, which is in good agreement with the Raman spectra. Based on the deconvolution results in this study and the calculation method from Thirupathi and Smirniotis's work,⁷ the Mn⁴⁺/Mn²⁺ surface atomic ratios were calculated to be 3.2, 5.2, 7.1 and 5.1 for MnO_x, Mn₂W₁O_x, MnWO_x and Mn₁W₂O_x, respectively, and the percentages of $Mn^{4+}/(Mn^{4+} + Mn^{2+})$ were correspondingly calculated to be 76%, 84%, 88% and 84%. The MnWO_x catalyst with the best NH₃-SCR performance possessed the highest surface concentration of Mn⁴⁺ species, which is also in good agreement with the conclusion drawn by Thirupathi and Smirniotis.7

As we stated in the experimental section, the Mn precursor was Mn(NO₃)₂ in which the Mn species was mainly in the valence state of 2+. After precipitation at higher pH value, we believe that the precipitates mainly contained $Mn(OH)_x$ in which the Mn²⁺ species was still dominant. After desiccation and calcination in air conditions, the Mn²⁺ species in outer layers of $Mn(OH)_x$ could be transformed into Mn^{3+} and Mn^{4+} species easily under an oxidizing atmosphere (resulting in the formation of above-mentioned Mn₅O₈), and the Mn²⁺ species in inner layers of $Mn(OH)_x$ could only be oxidized to Mn^{3+} species partially due to the limitation of oxygen diffusion (resulting in the formation of above-mentioned Mn₃O₄). Thus, the core-shell structure of MnO_x with Mn₃O₄ as core and Mn₅O₈ as shell was formed. In the preparation process, the addition of W species could well inhibit the growth of MnO_x into large particles, leaving more Mn species to be oxidized in outer layers. Therefore, it is reasonable to obtain higher surface concentration of Mn⁴⁺ species on the W promoted MnWO_x catalyst than that on the pristine MnO_r sample, which is beneficial to the improvement of NO oxidation ability and thus low temperature NH₃-SCR activity.

The O 1s XPS of $Mn_aW_bO_r$ catalysts after deconvolution are shown in Fig. 9B. The sub-bands at lower binding energy (529.7–530.4 eV) corresponded to the lattice oxygen O^{2-} (denoted as O_{β}), and the sub-bands at higher binding energy (531.0-531.3 eV) corresponded to the surface adsorbed oxygen (denoted as O_{α}), such as O_2^{2-} or O^- belonging to defect-oxide or hydroxyl-like group.⁴² Generally, O_{α} is more reactive in oxidation reactions due to its higher mobility than O_{β} ,³ which is also beneficial to the NO oxidation to NO2 thus facilitating the "fast SCR" process. Therefore, the ratios of $O_{\alpha}/(O_{\alpha} + O_{\beta})$ on all samples are calculated and listed. As we can see, the W addition into MnO_x greatly increased the $O_{\alpha}/(O_{\alpha} + O_{\beta})$ ratio, *e.g.* the ratio was as high as 49.9% for MnWO_x catalyst. Much more amount of surface adsorbed oxygen was observed on MnWO_x catalyst than those on pristine MnO_x (35.4%) and WO_x (22.2%), indicating that the strong interaction between Mn and W species could produce extra surface vacancies to activate oxygen and also more surface hydroxyls participating into the SCR reaction.

3.7 In situ DRIFTS

To investigate the influence of W addition on NH₃/NO_x adsorption together with the SCR reaction mechanism, in situ DRIFTS were conducted at 100 °C and the results are shown in Fig. 10. After NH_3 adsorption and N_2 purge (Fig. 10A), no bands attributed to adsorbed NH₃ species were detected on WO_x, probably due to its very small surface area. In contrast, on the MnO_x sample, the bands attributed to coordinated NH_3 $(\delta_{as} \text{ at } 1603 \text{ cm}^{-1}, \delta_s \text{ at } 1188 \text{ cm}^{-1} \text{ and } N-H \text{ stretching vibration}$ modes at 3346, 3244, 3155 cm^{-1}) bound to Lewis acid sites^{43,44} were clearly observed. Besides, a small amount of ionic NH₄⁺ species bound to Brønsted acid sites (δ_{as} at 1450 cm⁻¹) was also formed,^{43,45} along with the formation of consumption bands of surface acidic hydroxyls at 3593 and 3442 cm^{-1,46,47} It is noteworthy that the amide species (-NH₂) resulting from dehydrogenation of adsorbed NH₃ was also detected (1558 cm⁻¹),⁴⁷ which can react directly with gaseous or weakly adsorbed NO to form NH₂NO and then decompose into N₂ and H₂O. After W addition,

Fig. 10 In situ DRIFTS of (A) NH₃ adsorption, (B) NO + O₂ adsorption at 100 °C on MnWO_x, MnO_x and WO_x, (C) NO + O₂ reacted with pre-adsorbed NH₃ species, and (D) NH₃ reacted with pre-adsorbed NO_x species at 100 °C on MnWO_x.

the band intensities of adsorbed NH₃ species bound to both Lewis and Brønsted acid sites (including the δ_s vibration mode of NH₄⁺ at 1684 cm⁻¹) together with the -NH₂ species on MnWO_x catalyst were greatly enhanced, indicating a higher surface acidity and oxidation ability induced by W species. Another shoulder band at 1419 cm⁻¹ possibly ascribed to NH₄⁺ bound to W sites was also observed,⁴⁸ indicating that the doped W species can play a role as extra Brønsted acid sites on MnWO_x catalyst surface.

After NO + O_2 adsorption and N_2 purge (Fig. 10B), on WO_x sample, no bands ascribed to either nitrite or nitrate species were observed. In contrast, on the MnO_x sample, several distinct infrared bands attributed to monodentate nitrate (ν_3 high at 1524 cm⁻¹ and ν_3 low 1271 cm⁻¹), bridging nitrate (ν_3 high at 1626 cm⁻¹) and bidentate nitrate (ν_3 high at 1593 cm⁻¹ and ν_1 at 1011 cm⁻¹)⁴⁹⁻⁵² were clearly present. The negative bands attributed to the consumption of surface basic hydroxyls through interaction with NOr were also observed at 3631 and 3585 cm⁻¹,⁵³ which were different from those ascribed to the surface acidic hydroxyls in Fig. 10A. After W addition, the adsorbed nitrate species showed an obvious increase in intensity, especially the monodentate nitrate. In our previous study, we concluded that the reactivity of monodentate nitrate in SCR reaction was much higher than that of bridging nitrate, while bidentate nitrate was only present as spectator species.54,55 Therefore, the enhanced formation of monodentate nitrate on the W promoted catalyst is evidently responsible for the improvement of low temperature NH₃-SCR activity.

To confirm the reactivity of adsorbed NH₃ species in SCR reaction on MnWO_x catalyst, the in situ DRIFTS of reaction between pre-adsorbed NH₃ and NO + O₂ were recorded as a function of time (Fig. 10C). After the introduction of NO + O_2 at 100 °C, the adsorbed NH₃ species including coordinated NH₃ $(1603 \text{ and } 1192 \text{ cm}^{-1})$, ionic NH₄⁺ (1684, 1450 and 1419 cm⁻¹) and $-NH_2$ species (1558 cm⁻¹) showed an apparent decrease in intensity due to the reaction with NO_x, indicating that both Lewis and Brønsted acid sites on MnWO_x catalyst contribute to the SCR reaction and the reaction between -NH₂ and NO through Eley-Rideal (E-R) mechanism can proceed at low temperature. At the same time, the surface acidic hydroxyl groups (3593 and 3442 cm⁻¹) were liberated owing to the consumption of ionic NH_4^+ , while the basic hydroxyl groups (3631 and 3585 cm⁻¹) were consumed by NO_r adsorption with the formation of monodentate nitrate (1525 and 1275 cm^{-1}), bridging nitrate (1626 cm^{-1}) and bidentate nitrate $(1593 \text{ and } 1012 \text{ cm}^{-1})$. It is noteworthy that after the introduction of NO + O_2 for 2 or 3 min, two shoulder bands at 1456 and 1290 cm⁻¹ can be hazily observed, which might be a reactive intermediate species in NH₃-SCR reaction.

In contrast, the reactivity of adsorbed NO_x species in SCR reaction on $MnWO_x$ catalyst was also investigated by *in situ* DRIFTS of reaction between pre-adsorbed NO_x and NH_3 as a function of time (Fig. 10D). After the introduction of NH_3 , both monodentate nitrate (1524 and 1271 cm⁻¹) and bridging nitrate (1626 cm⁻¹) showed a rapid decrease in intensity, indicating that these nitrate species were reactive in the SCR reaction.

Catalysis Science & Technology

At the same time, the bands attributed to coordinated NH₃ $(1603 \text{ and } 1192 \text{ cm}^{-1})$ and ionic NH_4^+ (1684 cm^{-1}) were observed, and the band positions of the consumed surface basic hydroxyls also shifted to those corresponding to acidic hydroxyls. Although the ν_3 high vibration mode of bidentate nitrate at 1593 cm^{-1} might be overlapped by the growing bands at 1603 and 1456 cm⁻¹, we can still confirm its presence through the ν_1 vibration mode at 1032 cm⁻¹. The blue shift of this band might be caused by the interaction between bidentate nitrate and adsorbed NH₃ species. It is noticeable that two distinct bands at 1456 and 1290 cm⁻¹ were clearly observed, which cannot be ascribed only to either adsorbed NH_3 or adsorbed NO_x species. In our previous study,³⁰ these intermediate species were also observed, which was confirmed to be surface ammonium nitrate (NH₄NO₃) originating from NO₂ dimerization, disproportionate in the presence of H₂O and successive reaction with NH₃.⁵⁶⁻⁵⁸ Besides, the reactivity of surface NH₄NO₃ in SCR reaction was also verified,³⁰ following the equations as follows: $NH_4NO_3 + NO \rightarrow NH_4NO_2 + NO_2$, $NH_4NO_2 \rightarrow N_2 + 2H_2O$. The importance of surface NH_4NO_3 species in SCR reaction and the similar Langmuir-Hinshelwood (L-H) reaction mechanism were also observed by other researchers over V2O5-WO3/TiO2, Fe-ZSM-5 and Cu-ZSM-5 catalysts.56,59-61 From in situ DRIFTS results we can conclude that, the SCR reaction at low temperatures over MnWO_x catalyst follows both L-H mechanism between NH₃ adsorbed species and nitrate species plus E-R mechanism between -NH2 species and gaseous NO. The W addition into MnO_r results in higher adsorption ability of NH3 and NOx simultaneously, thus promoting the L-H reaction pathway; the oxidation ability of W doped catalyst is also enhanced with higher surface concentration of -NH₂ species formed after NH₃ adsorption, thus promoting the E-R reaction pathway. Besides, as presented in Fig. 4, the NO oxidation over MnWO_x catalyst lighted-off at much lower temperatures than the NH_3 oxidation (e.g. the NO conversion to NO_2 was ca. 40% at 100 °C whereas the NH₃ conversion was *ca.* 10%), and these data indicate that the L-H mechanism is probably more important at low temperatures.

It should be noted that if in the presence of water vapor, the transformation of partial Lewis acid sites into Brønsted acid sites might occur due to the hydroxylation effect, and the NH₃ adsorption as NH₄⁺ species was enhanced to a certain extent, as confirmed by the DRIFTS results in Fig. S2(A).[†] However, at the same time, the NO_x adsorption might be inhibited to a certain extent, as verified by the DRIFTS results in Fig. S2(B),[†] thus resulting in the partial inhibition of L-H reaction pathway and the decrease of low temperature NH₃-SCR activity in the presence of H₂O. After the stop of H₂O, both the NH₃ and NO_x adsorption over MnWO_x catalyst could be recovered to the initial status, indicating that this inhibition effect of H₂O at short time was reversible. Under the NH₃-SCR reaction atmosphere, the ammonium nitrate species could form on the catalyst surface, as shown by the DRIFTS results in Fig. S2(C),[†] and its deposition amount would be increased gradually in the presence of H₂O if operating at long term. The severe deposition of ammonium nitrate on catalyst surface would lead to the blocking of pore

channels and the occupation of active sites, thus resulting in the decline of low temperature $deNO_x$ efficiency to a certain extent. In practical use, the regeneration tragedy such as steam washing or periodic heating can be applied to reduce this deactivation problem.

4. Conclusions

A novel W promoted MnO_x catalyst was used for NH_3 -SCR of NO_x at low temperatures, which showed high $deNO_x$ efficiency from 60 to 250 °C. The $MnWO_x$ catalyst exhibited a core-shell structure, with the Mn_3O_4 phase covered by Mn_5O_8 possessing high concentration of Mn^{4+} species at outer surfaces. The W addition decreased the particle size of MnO_x phase, increased the surface acidity and facilitated the NO/NH_3 oxidation, thus improving the low temperature NH_3 -SCR activity by promoting both L-H and E-R reaction pathways.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51108446, 51221892), the Ministry of Science and Technology, China (2012AA062506), BL14W1 beamline, SSRF and Photon Factory, KEK, Japan (2012G537). The authors would also like to thank the help from Prof. Kiyotaka Asakura for XAFS experiments and Dr Lian Wang for measuring TEM images.

Notes and references

- 1 G. Busca, L. Lietti, G. Ramis and F. Berti, *Appl. Catal., B*, 1998, **18**, 1.
- 2 J. Li, H. Chang, L. Ma, J. Hao and R. T. Yang, *Catal. Today*, 2011, **175**, 147.
- 3 Z. Wu, R. Jin, Y. Liu and H. Wang, *Catal. Commun.*, 2008, 9, 2217.
- 4 B. Thirupathi and P. Smirniotis, Catal. Lett., 2011, 141, 1399.
- 5 X. Tang, J. Hao, W. Xu and J. Li, *Catal. Commun.*, 2007, 8, 329.
- 6 F. Eigenmann, M. Maciejewski and A. Baiker, *Appl. Catal.*, *B*, 2006, **62**, 311.
- 7 B. Thirupathi and P. G. Smirniotis, J. Catal., 2012, 288, 74.
- 8 P. R. Ettireddy, N. Ettireddy, T. Boningari, R. Pardemann and P. G. Smirniotis, *J. Catal.*, 2012, **292**, 53.
- 9 A. Sultana, M. Sasaki and H. Hamada, *Catal. Today*, 2012, 185, 284.
- M. Schwidder, S. Heikens, A. De Toni, S. Geisler, M. Berndt,
 A. Brückner and W. Grünert, *J. Catal.*, 2008, 259, 96.
- 11 M. Iwasaki, K. Yamazaki, K. Banno and H. Shinjoh, *J. Catal.*, 2008, **260**, 205.
- 12 S. Brandenberger, O. Kröcher, A. Tissler and R. Althoff, *Appl. Catal.*, *B*, 2010, **95**, 348.
- 13 M. Høj, M. J. Beier, J.-D. Grunwaldt and S. Dahl, *Appl. Catal., B*, 2009, **93**, 166.
- 14 D. Klukowski, P. Balle, B. Geiger, S. Wagloehner, S. Kureti,B. Kimmerle, A. Baiker and J. D. Grunwaldt, *Appl. Catal., B*, 2009, 93, 185.

- 15 H. Sjövall, L. Olsson, E. Fridell and R. J. Blint, *Appl. Catal., B*, 2006, **64**, 180.
- 16 D. W. Fickel, E. D'Addio, J. A. Lauterbach and R. F. Lobo, *Appl. Catal.*, *B*, 2011, **102**, 441.
- 17 S. J. Schmieg, S. H. Oh, C. H. Kim, D. B. Brown, J. H. Lee, C. H. F. Peden and D. H. Kim, *Catal. Today*, 2012, **184**, 252.
- 18 U. Deka, A. Juhin, E. A. Eilertsen, H. Emerich, M. A. Green, S. T. Korhonen, B. M. Weckhuysen and A. M. Beale, *J. Phys. Chem. C*, 2012, **116**, 4809.
- 19 P. G. W. A. Kompio, A. Brückner, F. Hipler, G. Auer,
 E. Löffler and W. Grünert, *J. Catal.*, 2012, 286, 237.
- 20 Z. Si, D. Weng, X. Wu, J. Li and G. Li, J. Catal., 2010, 271, 43.
- 21 Z. Si, D. Weng, X. Wu, Y. Jiang and B. Wang, *Catal. Sci. Technol.*, 2011, 1, 453.
- 22 L. Chen, J. Li, M. Ge and R. Zhu, Catal. Today, 2010, 153, 77.
- 23 W. Shan, F. Liu, H. He, X. Shi and C. Zhang, *Chem. Commun.*, 2011, 47, 8046.
- 24 F. Liu, H. He, Y. Ding and C. Zhang, *Appl. Catal., B*, 2009, **93**, 194.
- 25 M. Newville, J. Synchrotron Radiat., 2001, 8, 322.
- 26 J. J. W. Cook and D. E. Sayers, J. Appl. Phys., 1981, 52, 5024.
- 27 A. L. Ankudinov, B. Ravel, J. J. Rehr and S. D. Conradson, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1998, **58**, 7565.
- 28 W. S. Kijlstra, J. C. M. L. Daamen, J. M. van de Graaf, B. van der Linden, E. K. Poels and A. Bliek, *Appl. Catal., B*, 1996, 7, 337.
- 29 Z. Huang, Z. Liu, X. Zhang and Q. Liu, *Appl. Catal.*, *B*, 2006, 63, 260.
- 30 F. Liu and H. He, Catal. Today, 2010, 153, 70.
- 31 J.-H. Park, H. J. Park, J. H. Baik, I.-S. Nam, C.-H. Shin, J.-H. Lee, B. K. Cho and S. H. Oh, *J. Catal.*, 2006, 240, 47.
- 32 A. Sultana, T. Nanba, M. Haneda and H. Hamada, *Catal. Commun.*, 2009, **10**, 1859.
- 33 J. H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi and C. H. F. Peden, *J. Catal.*, 2010, 275, 187.
- 34 J. H. Kwak, D. Tran, S. D. Burton, J. Szanyi, J. H. Lee and C. H. F. Peden, *J. Catal.*, 2012, 287, 203.
- 35 G. Qi and R. T. Yang, Appl. Catal., B, 2003, 44, 217.
- 36 T. Gao, P. Norby, F. Krumeich, H. Okamoto, R. Nesper and H. Fjellvåg, *J. Phys. Chem. C*, 2010, **114**, 922.
- 37 C. B. Azzoni, M. C. Mozzati, P. Galinetto, A. Paleari, V. Massarotti, D. Capsoni and M. Bini, *Solid State Commun.*, 1999, **112**, 375.
- 38 A. S. Mamede, E. Payen, P. Grange, G. Poncelet, A. Ion, M. Alifanti and V. I. Pârvulescu, J. Catal., 2004, 223, 1.

- 39 C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, J. Am. Chem. Soc., 2001, 123, 10639.
- 40 S. S. Chan, I. E. Wachs, L. L. Murrell and N. C. Dispenziere Jr, *J. Catal.*, 1985, **92**, 1.
- 41 B. Thirupathi and P. G. Smirniotis, *Appl. Catal., B*, 2011, **110**, 195.
- 42 M. Kang, E. D. Park, J. M. Kim and J. E. Yie, *Appl. Catal., A*, 2007, **327**, 261.
- 43 G. Qi and R. T. Yang, J. Phys. Chem. B, 2004, 108, 15738.
- 44 N.-Y. Topsøe, Science, 1994, 265, 1217.
- 45 Z. Wu, B. Jiang, Y. Liu, H. Wang and R. Jin, *Environ. Sci. Technol.*, 2007, **41**, 5812.
- 46 L. Chen, J. Li and M. Ge, *Environ. Sci. Technol.*, 2010, 44, 9590.
- 47 D. Sun, Q. Liu, Z. Liu, G. Gui and Z. Huang, *Catal. Lett.*, 2009, **132**, 122.
- 48 L. Chen, J. Li, M. Ge, L. Ma and H. Chang, *Chin. J. Catal.*, 2011, 32, 836.
- 49 L. Liu, Y. Chen, L. Dong, J. Zhu, H. Wan, B. Liu, B. Zhao, H. Zhu, K. Sun, L. Dong and Y. Chen, *Appl. Catal., B*, 2009, 90, 105.
- 50 F. Prinetto, M. Manzoli, S. Morandi, F. Frola, G. Ghiotti, L. Castoldi, L. Lietti and P. Forzatti, *J. Phys. Chem. C*, 2009, 114, 1127.
- 51 M. Sirilumpen, R. T. Yang and N. Tharapiwattananon, J. Mol. Catal. A: Chem., 1999, 137, 273.
- 52 G. M. Underwood, T. M. Miller and V. H. Grassian, *J. Phys. Chem. A*, 1999, **103**, 6184.
- 53 B. Onida, F. Geobaldo, F. Testa, F. Crea and E. Garrone, *Microporous Mesoporous Mater.*, 1999, **30**, 119.
- 54 F. Liu, H. He, C. Zhang, W. Shan and X. Shi, *Catal. Today*, 2011, **175**, 18.
- 55 F. Liu and H. He, J. Phys. Chem. C, 2010, 114, 16929.
- 56 A. Grossale, I. Nova, E. Tronconi, D. Chatterjee and M. Weibel, *J. Catal.*, 2008, **256**, 312.
- 57 G. Piazzesi, M. Elsener, O. Kröcher and A. Wokaun, *Appl. Catal.*, *B*, 2006, **65**, 169.
- 58 G. Madia, M. Koebel, M. Elsener and A. Wokaun, *Ind. Eng. Chem. Res.*, 2002, **41**, 4008.
- 59 A. Grossale, I. Nova, E. Tronconi, D. Chatterjee and M. Weibel, *Top. Catal.*, 2009, **52**, 1837.
- 60 C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee and B. Bandl-Konrad, *Chem. Commun.*, 2004, 2718.
- 61 P. Forzatti, I. Nova and E. Tronconi, *Angew. Chem.*, 2009, 121, 8516.