ELSEVIER Contents lists available at SciVerse ScienceDirect ## **Catalysis Today** journal homepage: www.elsevier.com/locate/cattod # An environmentally-benign CeO_2 -Ti O_2 catalyst for the selective catalytic reduction of NO_x with NH_3 in simulated diesel exhaust Wenpo Shan^{a,b}, Fudong Liu^{a,*}, Hong He^{a,*}, Xiaoyan Shi^a, Changbin Zhang^a - ^a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China - ^b College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China #### ARTICLE INFO Article history: Received 22 August 2011 Received in revised form 11 November 2011 Accepted 12 November 2011 Available online 18 December 2011 Keywords: CeO₂-TiO₂ Selective catalytic reduction Nitrogen oxides Diesel engine exhaust Homogeneous precipitation method #### ABSTRACT A Ce-Ti based (CeO $_2$ -TiO $_2$) catalyst prepared by an optimized homogeneous precipitation method showed excellent NH $_3$ -SCR activity, high N $_2$ selectivity, broad operation temperature window, and high resistance to space velocity (even under a high gas hourly space velocity (GHSV) of 500,000 h $^{-1}$). Compared with V $_2$ O $_5$ -WO $_3$ /TiO $_2$ and Fe-ZSM-5 catalysts, the CeO $_2$ -TiO $_2$ catalyst showed better catalytic performance for NH $_3$ -SCR. Under a more realistic condition of simulated diesel engine exhaust, the monolith catalyst of CeO $_2$ -TiO $_2$ showed over 90% NO $_x$ conversion from 250 to 450 °C under a GHSV of 20,000 h $^{-1}$ in the presence of H $_2$ O, CO $_2$, and C $_3$ H $_6$. The high dispersion of active CeO $_2$ on TiO $_2$ in the process of homogenous precipitation and the synergistic effects between CeO $_2$ and TiO $_2$ in CeO $_2$ -TiO $_2$ are important reasons for the high NH $_3$ -SCR activity. © 2011 Elsevier B.V. All rights reserved. #### 1. Introduction Compared with gasoline engines, highly fuel efficient diesel engines could reduce fuel consumption and decrease the production of greenhouse gas carbon dioxide (CO_2). However, the emission of NO_x remains a major constraint of diesel engines [1–3]. Selective catalytic reduction of NO_x by NH_3 (NH_3 -SCR) is one of the most promising NO_x control strategies for lean burn engines, particularly diesel engines, to meet the increasingly stringent standards for NO_x emissions [1]. The high NO_x removal efficiency by NH_3 -SCR allows fuel sensitive applications to be run at maximum efficiency (high NO_x , low PM), which could offer significant fuel savings (about 8% with respect to exhaust gas recirculation (EGR) systems) [2]. NH_3 -SCR over V_2O_5 -WO $_3$ (or MoO_3)/TiO $_2$ has been widely used for many decades and is still the best commercial technology for NO_x abatement from stationary sources [4,5]. Vanadium-based catalysts were also introduced into the diesel vehicle market due to their effectiveness for NH_3 -SCR reaction and resistance to SO_2 poisoning [1,5]. However, the toxicity of active vanadium species, together with the large N_2O formation at high temperatures, has restrained its wider application, and vanadium-based SCR catalysts E-mail addresses: fdliu@rcees.ac.cn (F. Liu), honghe@rcees.ac.cn (H. He). for NO_x removal from mobile sources will be gradually removed from the market over the next few years [2]. Therefore, great efforts have been made to develop environmentally-benign NH_3 -SCR catalysts, with high SCR activity and N_2 selectivity in a wide temperature range, for controlling the NO_x emissions from mobile sources such as diesel engines. There are limitations to the catalyst volume that can be placed on board, which requires that the SCR catalyst should present superior NH3-SCR performance under high space velocity conditions. Therefore, transition metal-exchanged zeolites, with high resistance to space velocity, have received increasing attention in recent years for the purpose of mobile application [6]. Particularly, iron or copper-exchanged zeolites have been extensively studied for their high catalytic activity and selectivity for N₂ production [7–11]. However, the insufficient low-temperature activity of iron-exchanged zeolites and the lack of hydrothermal stability of copper-exchanged zeolites have limited their industrial application [1,6,12]. Recently, some Cu-containing small-pore zeolites, such as Cu-SSZ-13 [13-15] and Cu-SAPO-34 [14], with remarkably improved hydrothermal stability, have been reported as promising candidates for the potential application in diesel engine exhaust treatment. Some vanadium-free transition metal-based oxide catalysts, such as FeTiO $_X$ [16–18], CuO $_X$ /WO $_X$ -ZrO $_2$ [19], and WO $_3$ /CeO $_2$ -ZrO $_2$ [20], have also been reported as potential substitutes of vanadium-based catalysts for diesel vehicles. Nevertheless, these catalysts have been mainly tested under relatively low GHSV (<100,000 h $^{-1}$). ^{*} Corresponding authors at: P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China. Tel.: +86 10 62911040/62849123; fax: +86 10 62911040/62849123. Since the reduction of NH_3 -SCR catalyst volume is one of the main challenges to diesel vehicles with limited space on board, it is very important to develop metal oxide catalysts with high resistance to space velocity [1,2]. Cerium has two stable oxidation states (Ce³⁺ and Ce⁴⁺), which provide it with significant oxygen storage capability through the redox shift between the two oxidation states. Cerium has often been used as an additive to enhance the activity of various catalysts. For example, the addition of cerium enhances the NH₃-SCR activity and stability of Fe-ZSM-5 [7], V₂O₅-WO₃/TiO₂ [21], and MnO_x/TiO₂ [22]. In addition, some CeO₂-based catalysts, such as CeO₂-zeolite [23] and sulfated CeO₂ [24], are very active for NH₃-SCR reaction. In our previous study, we successfully developed a highly effective Ce/TiO₂ catalyst prepared by impregnation method for NH₃-SCR reaction [25]. We also recently improved the catalytic activity of a Ce-Ti based catalyst. The improved catalyst, prepared by a facile homogeneous precipitation method, showed relatively good SCR activity under a high GHSV of 150,000 h⁻¹ due to the highly dispersed CeO2 on TiO2 [26]. In the present study, a Ce-Ti based catalyst (CeO2-TiO2) was prepared by an optimized homogeneous precipitation method. The CeO₂-TiO₂ catalyst exhibited an excellent performance under a GHSV of 250,000 h⁻¹ in simulated diesel exhaust and even showed good resistance to a high GHSV of 500,000 h⁻¹, thus it is a potential candidate for practical application in the deNO_x process for diesel engines. #### 2. Experimental #### 2.1. Catalyst synthesis and activity test The CeO_2 -TiO $_2$ catalyst was prepared by an optimized homogeneous precipitation method. The aqueous solutions of $Ce(NO_3)_3 \cdot 6H_2O$ and $Ti(SO_4)_2$ were mixed with a required molar ratio (Ce/Ti = 1:5). Excessive urea aqueous solution was then added into the mixed solution, with a urea/(Ce+Ti) molar ratio of 10:1. The mixed solution was then heated to 90 °C and held there for 12 h (to investigate the formation process of the CeO_2 -TiO $_2$ catalyst, some samples with different precipitation time were also prepared) with vigorous stirring. After filtration and washing with deionized water, the resulting precipitant was dried at 100 °C overnight and subsequently calcined at 500 °C for 5 h in air conditions. Pristine CeO_2 and TiO_2 were also prepared using the same method as reference samples for activity tests and characterizations. Before the NH₃-SCR activity test, the powder catalysts were pressed, crushed, and sieved to 40–60 mesh. To evaluate the CeO_2 -Ti O_2 catalyst under more practical conditions, a cylindrical cordierite honeycomb (300 cpsi) was washcoated by catalyst slurry. After drying at $100\,^{\circ}$ C overnight and subsequent calcination at $500\,^{\circ}$ C for 3 h in air conditions, the CeO_2 -Ti O_2 monolith catalyst with $130\,\text{g/L}$ loading was obtained. To comprehensively evaluate the activity of the CeO_2 - TiO_2 catalyst in this study, conventional V_2O_5 - WO_3/TiO_2 and FeZSM-5 catalysts were prepared as reference materials. The V_2O_5 - WO_3/TiO_2 catalyst with 4.5 wt.% V_2O_5 and 10 wt.% WO_3 was prepared by conventional impregnation method using NH_4VO_3 , $(NH_4)_{10}W_{12}O_{41}$, and $H_2C_2O_4\cdot 2H_2O$ as precursors and anatase TiO_2 as the support. After impregnation, the excess water was removed in a rotary evaporator at $80\,^{\circ}$ C. The sample was dried at $100\,^{\circ}$ C overnight and then calcined at $550\,^{\circ}$ C for 3 h in air conditions. The Fe-ZSM-5 catalyst with an iron loading of 7 wt.% was prepared by incipient wetness impregnation method using $FeCl_2\cdot 4H_2O$ as the precursor and H-ZSM-5 (Si/Al = 25) as the support. We firstly dissolved $FeCl_2\cdot 4H_2O$ in deionized water and then added H-ZSM-5 to form a paste. The paste was aged for $24\,\text{h}$ at room temperature and dried at $60 \,^{\circ}\text{C}$ overnight. Finally, the sample was calcined in air conditions at $550 \,^{\circ}\text{C}$ for $6 \, \text{h}$. The CeO_2 -TiO₂ and V_2O_5 -WO₃/TiO₂ catalysts calcined at 800 °C for 1 h in air conditions were also prepared to investigate their thermal stabilities for practical use, and were denoted as CeO_2 -TiO₂-800 and V_2O_5 -WO₃/TiO₂-800, respectively. The SCR activity measurements were carried out in a fixed-bed quartz flow reactor at atmospheric pressure. The reaction conditions were controlled as follows: $500 \, \mathrm{ppm} \, \mathrm{NO}$, $500 \, \mathrm{ppm} \, \mathrm{NH}_3$, $5 \, \mathrm{vol.\%} \, \mathrm{O_2}$, $[\mathrm{H_2O}] = 5 \, \mathrm{vol.\%} \, (\mathrm{when} \, \mathrm{used})$, $[\mathrm{CO_2}] = 5 \, \mathrm{vol.\%} \, (\mathrm{when} \, \mathrm{used})$, $[\mathrm{C_3H_6}] = 500 \, \mathrm{ppm} \, (\mathrm{when} \, \mathrm{used})$, balance $\mathrm{N_2}$, and $500 \, \mathrm{ml/min} \, \mathrm{total}$ flow rate. Different GHSVs were obtained by changing the volume of the catalyst. The effluent gas, including NO, NH₃, NO₂, and N₂O was continuously analyzed by an online NEXUS 670-FTIR spectrometer equipped with a gas cell with 0.2 dm³ volume. The FTIR spectra were collected after 1 h when the SCR reaction reached a steady state. The $\mathrm{NO_x}$ conversion and $\mathrm{N_2}$ selectivity were calculated as follows [18,26,27]: $$NO_x \quad conversion = \left(1 - \frac{[NO]_{out} + [NO_2]_{out}}{[NO]_{in} + [NO_2]_{in}}\right) \times 100\% \tag{1}$$ $$\begin{split} N_2 \ \ selectivity &= \frac{[NO]_{in} + [NH_3]_{in} - [NO_2]_{out} - 2[N_2O]_{out}}{[NO]_{in} + [NH_3]_{in}} \times 100\% \end{split} \label{eq:N2}$$ #### 2.2. Characterizations The surface areas of the samples were obtained by N_2 adsorption/desorption analysis at $-196\,^{\circ}\text{C}$ using a Quantachrome Quadrasorb SI-MP. Prior to the N_2 physisorption, the catalysts were degassed at 300 $^{\circ}\text{C}$ for 4 h. Surface areas were determined by BET equation in 0.05–0.35 partial pressure range. The surface morphology and elemental composition of the samples were studied using a scanning electron microscope (SEM, Hitachi, S-3000N) combined with an energy dispersive X-ray (EDX) attachment. The accelerating voltage was 5.0 kV. Powder X-ray diffraction (XRD) measurements of the catalysts were carried out on a computerized PANalytical X'Pert Pro diffractometer with Cu K α (λ = 0.15406 nm) radiation. The data of 2θ from 20 to 80° were collected at 8° /min with the step size of 0.07° . Visible Raman spectra of the catalysts were collected at room temperature on a Spex 1877 D triplemate spectrograph with spectral resolution of 2 cm⁻¹. A 532 nm DPSS diode-pump solid semiconductor laser was used as the excitation source and the power output was about 40 mW. Before measurements, the samples were well ground and mounted into a spinning holder to avoid thermal damage during scanning. The Raman signals were collected with conventional 90° geometry and the time for recording each spectrum was about 1000 ms. All Raman spectra used in this paper were original and unsmoothed. The XPS of CeO₂, TiO₂ and CeO₂-TiO₂ were recorded on a scanning X-ray microprobe (PHI Quantera, ULVAC-PHI, Inc.) using Al K α radiation (1486.7 eV). Binding energies of Ce 3d and O 1s were calibrated using C 1s peak (BE = 284.8 eV) as standard. #### 3. Results and discussion #### 3.1. NH₃-SCR activity of CeO₂-TiO₂ catalyst The NH₃-SCR activities of CeO₂-TiO₂, CeO₂, and TiO₂ under a fixed GHSV of 250,000 h⁻¹ are shown in Fig. 1. The pristine CeO₂ showed rather poor SCR activity in the whole temperature range with a maximum NO_{α} conversion of 26%, while pristine TiO₂ did not exhibit any SCR activity at temperatures below 425 °C. However, **Fig. 1.** NH₃-SCR activity of CeO₂-TiO₂ catalyst under different GHSV (50,000, 250,000 and $500,000 \, h^{-1}$) and CeO₂ and TiO₂ under GHSV of $250,000 \, h^{-1}$. Reaction conditions: $[NO] = [NH_3] = 500 \, \text{ppm}$, $[O_2] = 5 \, \text{vol.\%}$, and N_2 balance. the CeO₂-TiO₂ catalyst presented excellent NH₃-SCR activity in a broad temperature range. This result indicates that a synergistic effect for the NH₃-SCR reaction might exist between Ce species and Ti species. The NH₃-SCR catalyst usually undergoes different GHSV in different working conditions of the diesel vehicles, thus the influence of GHSV on NO_x conversion over the CeO₂-TiO₂ catalyst was also investigated (Fig. 1). The CeO₂-TiO₂ catalyst showed over 90% NO_x conversion in a wide temperature range from 200 to 425 °C under a GHSV of 50,000 h⁻¹. With increasing GHSV, the low temperature SCR activity of the catalyst decreased somewhat. However, it still exhibited an excellent performance under a GHSV of 250,000 h⁻¹ and even showed high resistance to a GHSV of 500,000 h⁻¹, which is important for its practical use on diesel vehicles to reduce the volume of the SCR catalytic converter. # 3.2. Comparison with V_2O_5 - WO_3 / TiO_2 and Fe-ZSM-5 catalysts and the influence of high temperature calcination $V_2O_5\text{-}WO_3/\text{Ti}O_2$ and Fe-ZSM-5 are two types of NH₃-SCR catalysts which have been industrially and commercially used for NO_X abatement from diesel exhaust. To better evaluate the NH₃-SCR performance of the CeO₂-TiO₂ catalyst, comparative SCR activity tests over $V_2O_5\text{-}WO_3/\text{Ti}O_2$ and Fe-ZSM-5 catalysts were also carried out (Fig. 2). The NO_X conversion over the CeO₂-TiO₂ catalyst was almost the same as that over $V_2O_5\text{-}WO_3/\text{Ti}O_2$ (Fig. 2A), while the N₂ selectivity over the CeO₂-TiO₂ catalyst was much higher than that over $V_2O_5\text{-}WO_3/\text{Ti}O_2$ in the high temperature range (Fig. 2B). Compared with the Fe-ZSM-5 catalyst, the operation temperature window of the CeO₂-TiO₂ catalyst was more than 50 °C lower under the same GHSV, with similar N₂ selectivity above 95% in the whole temperature range. The high NH₃-SCR activity and N₂ selectivity over a broad temperature range are important characteristics of the CeO₂-TiO₂ catalyst in regards to its practical utilization. To evaluate the thermal stability of the catalyst, the influence of high temperature calcination on CeO_2 - TiO_2 and V_2O_5 - WO_3/TiO_2 was investigated (Fig. 2A). After high temperature calcination at $800\,^{\circ}$ C, the V_2O_5 - WO_3/TiO_2 -800 lost almost all the NH₃-SCR activity in the whole temperature range. However, the low temperature activity of the CeO_2 - TiO_2 -800 catalyst was still obviously higher than that of Fe-ZSM-5, indicating its high resistance to thermal shock. In short, the CeO_2 - TiO_2 catalyst is a potential candidate for the catalytic removal of NO_x from mobile sources, especially diesel engines with wide exhaust temperature ranges and high GHSV. **Fig. 2.** Comparison of (A) NH₃-SCR activity and (B) N₂ selectivity of CeO₂-TiO₂ catalyst (calcined at 500 and 800 °C) with those of V₂O₅-WO₃/TiO₂ and Fe-ZSM-5 catalysts. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol.%, N₂ balance and GHSV = $250.000 \, h^{-1}$. ### 3.3. NH_3 -SCR activity of CeO_2 -Ti O_2 monolith catalyst To evaluate the CeO_2 - TiO_2 catalyst under more realistic conditions, a monolith catalyst with $130\,\mathrm{g/L}$ loading was prepared and tested under the same SCR condition as granulated catalysts and in the presence of H_2O , CO_2 and C_3H_6 (Fig. 3). Although the monolith catalyst was tested under a lower GHSV $(20,000\,\mathrm{h^{-1}})$, the ratio of sample weight to gas flow (W/F) of the tested monolith catalyst $(0.023\,\mathrm{g\,s/cm^3})$ was actually much lower than that of the tested granulated catalyst under the GHSV of $50,000\,\mathrm{h^{-1}}$ $(0.054\,\mathrm{g\,s/cm^3})$. Thus, it is not surprising that the NO_x conversion over the monolith catalyst under GHSV of $20,000\,\mathrm{h^{-1}}$ was lower than that over granulated catalyst under GHSV of $50,000\,\mathrm{h^{-1}}$ in the low temperature range. In the presence of 5% H_2O , 5% CO_2 and 250 ppm C_3H_6 , the low temperature NO_x conversion over the monolith catalyst decreased, while the high temperature NO_x conversion increased, which was mainly associated with the influence of H_2O (the blocking of active sites in the low temperature range and the inhibition of unselective oxidation of NH_3 in the high temperature range). The monolith catalyst exhibited over 90% NO_x conversion from 250 to 450 °C under a GHSV of 20,000 h⁻¹ in the presence of H_2O , CO_2 , and C_3H_6 , indicating that it is a promising catalyst for NO_x abatement from diesel engine exhaust. Further investigations on the H_2O and SO_2 effects and thermal stability of the CeO_2 - TiO_2 catalyst are currently being conducted. **Fig. 3.** NH₃-SCR activity of CeO₂-TiO₂ monolith catalyst. Reaction conditions: $[NO] = [NH_3] = 500 \text{ ppm}, [O_2] = 5 \text{ vol.}\%, [H_2O] = 5 \text{ vol.}\%$ (when used), $[CO_2] = 5 \text{ vol.}\%$ (when used), $[C_3H_6] = 500 \text{ ppm}$ (when used), N_2 balance and GHSV = 20,000 h⁻¹. Fig. 4. XRD patterns of CeO₂-TiO₂, CeO₂ and TiO₂. #### 3.4. XRD results and Raman spectra Fig. 4 shows the XRD patterns of the CeO_2 , TiO_2 , and CeO_2 - TiO_2 catalysts. No crystalline phase ascribed to Ce species was observed in CeO_2 - TiO_2 , suggesting that Ce existed as highly dispersed species. The average crystallite sizes of TiO_2 were calculated by Scherrer's equation and are shown in Table 1. With the introduction of Ce, the average crystallite size of TiO_2 decreased from 11.1 to 7.6 nm, indicating that the Ce species inhibited the growth of anatase TiO_2 crystallite, which also resulted in the higher BET surface area of CeO_2 - TiO_2 catalyst than that of pristine TiO_2 (Table 1). Fig. 5 shows the visible Raman spectra of the CeO₂, TiO₂, and CeO₂-TiO₂ catalysts. The pristine CeO₂ and TiO₂ samples showed typical Raman shifts attributed to CeO₂ (F_{2g} mode at 465 cm⁻¹) [28,29] and TiO₂ (B_{1g} mode at 400 cm⁻¹, A_{1g} mode at 521 cm⁻¹ and E_{g} mode at 648 cm⁻¹) [29,30], respectively. When the Ce species co-existed with the Ti species in the CeO₂-TiO₂ catalyst, no peak assigned to CeO₂ was detected, and the typical peaks of TiO₂ in BET surface area and average TiO₂ crystallite size (calculated by Scherrer equation from XRD results) of the samples. | Sample | BET surface area (m ² /g) | TiO ₂ Crystallite size (nm) | |------------------------------------|--------------------------------------|----------------------------------------| | CeO ₂ | 46.1 | _ | | CeO ₂ -TiO ₂ | 125.7 | 7.6 | | TiO ₂ | 106.7 | 11.1 | **Fig. 5.** Raman spectra of CeO_2 - TiO_2 , CeO_2 and TiO_2 (λ_{ex} = 532 nm). **Fig. 6.** XPS results of O 1s on CeO₂, TiO₂ and CeO₂-TiO₂. CeO_2 -Ti O_2 were much weaker than those in pristine Ti O_2 , which is in good agreement with the XRD results in Fig. 4. It was reported that nano-crystalline CeO_2 is the main active phase over Ce-Ti based catalyst [25,26], thus the highly dispersed CeO_2 on Ti O_2 by the coexistence of Ce and Ti species could increase the amount of active sites on the surface of CeO_2 -Ti O_2 . **Fig. 7.** The pH variation of the mixed solution during the preparation of the CeO₂-TiO₂ catalyst by the optimized homogeneous precipitation method. Fig. 8. SEM images and Ce/Ti molar ratios (determined by EDX analysis) of the samples prepared with different precipitation time. (A) 1.5 h; (B) 3 h; (C) 3.5 h; (D) 6.5 h; (E) 10 h and (F) 12 h. #### 3.5. XPS results of O 1s The XPS results of O 1s on pristine CeO₂, TiO₂ and CeO₂-TiO₂ catalysts are shown in Fig. 6. The O 1s peak was fitted into two sub-bands by searching for the optimum combination of Gaussian bands with correlation coefficients (r^2) above 0.99. The sub-bands at lower binding energy corresponded to the lattice oxygen O²-(denoted as O_B), and the sub-bands at higher binding energy corresponded to the surface adsorbed oxygen (denoted as O_{α}), such as O_2^{2-} or O^- belonging to defect-oxide or hydroxyl-like group [27]. The O_{α} ratio on CeO₂-TiO₂ (19.3%) calculated by $O_{\alpha}/(O_{\alpha}+O_{\beta})$ was much higher than those on pristine CeO_2 (7.8%) and TiO_2 (13.0%), which means that the synergistic effect between Ce and Ti species resulted in more surface oxygen vacancies. Usually, O_{α} is more reactive than O_{β} in oxidation reactions due to its higher mobility [22]. Therefore, the higher O_{α} ratio on CeO_2 -TiO₂ was beneficial for the NO oxidation to NO₂ in the SCR reaction, and thereby facilitated the "fast SCR" reaction and enhanced the $deNO_x$ efficiency at low temperatures. #### 3.6. Formation process of the CeO₂-TiO₂ catalyst The above results demonstrate that homogeneous precipitation produced highly dispersed CeO_2 on TiO_2 and the prepared CeO_2 - TiO_2 catalyst was highly active in the NH_3 -SCR reaction. Thus, we determined the formation process of the CeO_2 - TiO_2 catalyst during preparation. Fig. 7 shows that the pH of the mixed solution increased with preparation time during the homogeneous precipitation process. The initial pH of the mixed Ce(NO₃)₃·6H₂O, Ti(SO₄)₂, and urea solution was nearly zero due to the strong acidity of Ti(SO₄)₂. With urea hydrolyzation, the pH of the solution increased quickly in the first hour, after which a white precipitate was gradually produced and the increase in pH slowed down. After 3 h of heating, the pH of the solution showed a sharp increase and the precipitate turned yellow. The pH then steadily increased to about 7.0 and the precipitate gradually turned orange. After 8 h of heating, there was no significant change in the pH of the mixed solution or color of the precipitate. Fig. 8 shows the SEM images of the samples at 10k magnification prepared under different precipitation times, as well as the Ce/Ti molar ratios of the samples determined by EDX. All samples consisted of spherical particles with diameters varying from 1 to 5 μm . The particle size of these samples observed with SEM was much larger than the average crystallite sizes of TiO2 calculated by XRD (Table 1, 7.6 nm for CeO2-TiO2 and 11.1 nm for pristine TiO2), indicating that each spherical particle was not a single crystallite but an agglomerate of many single crystallites. According to the EDX results, the Ce/Ti molar ratios in the samples prepared with the precipitation time of (A) 1.5 h, (B) 3 h, (C) 3.5 h, (D) 6.5 h, (E) 10 h and (F) 12 h were 0, 0.005, 0.18, 0.21, 0.23 and 0.23, respectively, indicating a gradually increase in the Ce/Ti molar ratio with precipitation time. Based on the above results, the formation process of the CeO₂-TiO₂ catalyst was proposed. The Ti species was firstly precipitated when the pH of the mixed solution was between 1.0 and 2.0, and then the Ce species was precipitated uniformly onto the precipitated Ti species following the rapidly increase in pH to above 2.0. Accompanied with the increase in the Ce/Ti molar ratio during the precipitation process, the size of the precipitated spherical particles also increased. The process of homogenous precipitation is very important for the production of highly dispersed CeO₂ on TiO₂, which is probably a main reason for its excellent activity and high resistance to GHSV under SCR conditions. #### 4. Conclusions The CeO_2 -TiO $_2$ catalyst was prepared by an optimized homogeneous precipitation method for NH_3 -SCR of NO_x in the presence of excess oxygen. The catalyst showed excellent NH_3 -SCR activity and N_2 selectivity in a wide temperature range and exhibited good catalytic performance, even under a rather high GHSV of $500,000\,h^{-1}$. The CeO_2 -TiO $_2$ catalyst showed much better N_2 selectivity than V_2O_5 -WO $_3$ /TiO $_2$ and presented much higher low temperature SCR activity than Fe-ZSM-5, even after high temperature calcination at $800\,^{\circ}$ C. The monolith catalyst of CeO_2 -TiO $_2$ showed high NO_x conversion in a wide temperature range, even in the presence of H_2O , CO_2 , and C_3H_6 , which indicated that CeO_2 -TiO $_2$ is a promising catalyst for NO_x abatement in diesel engine exhaust. The process of homogenous precipitation is crucial for the production of highly dispersed active CeO₂ on TiO₂, which is very important for the high SCR activity of CeO₂-TiO₂ catalyst. The synergistic effects between CeO₂ and TiO₂ in the CeO₂-TiO₂ catalyst can inhibit the growth of anatase TiO₂ crystallite, which results in higher BET surface area. In addition, the synergistic effects between CeO_2 and TiO_2 can induce higher O_{α} ratio on the CeO_2 - TiO_2 catalyst, which is beneficial for the high SCR activity of the catalyst at low temperatures. #### Acknowledgements This work was financially supported by the National Natural Science Foundation of China (50921064, 51108446), the National Basic Research Program of China (2010CB732304), the National High Technology Research and Development Program of China (2009AA064802, 2010AA065003), the Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation (STGEF), and the Specialized Research Foundation for the Gainer of Outstanding Doctoral Thesis and Presidential Scholarship of Chinese Academy of Sciences. #### References - [1] P. Granger, V.I. Parvulescu, Chem. Rev. 111 (2011) 3155-3207. - [2] T.V. Johnson, Int. J. Engine Res. 10 (2009) 275-285. - [3] Z. Liu, S.I. Woo, Catal. Rev. 48 (2006) 43-89. - [4] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18 (1998) 1-36. - [5] S. Roy, M.S. Hegde, G. Madras, Appl. Energy 86 (2009) 2283–2297. - [6] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. 50 (2008) 492–531. - [7] R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 121 (1999) 5595-5596. - [8] A. Ma, W. Grünert, Chem. Commun. (1999) 71-72. - [9] G. Carja, G. Delahay, C. Signorile, B. Coq, Chem. Commun. (2004) 1404–1405. - [10] L. Xu, R.W. McCabe, R.H. Hammerle, Appl. Catal. B 39 (2002) 51-63. - [11] L. Li, J. Chen, S. Zhang, F. Zhang, N. Guan, T. Wang, S. Liu, Environ. Sci. Technol. 39 (2005) 2841–2847. - [12] J.H. Park, H.J. Park, J.H. Baik, I.S. Nam, C.H. Shin, J.H. Lee, B.K. Cho, S.H. Oh, J. Catal. 240 (2006) 47–57. - [13] J.H. Kwak, R.G. Tonkyn, D.H. Kim, J. Szanyi, C.H.F. Peden, J. Catal. 275 (2010) 187. - [14] D.W. Fickel, E. D'Addio, J.A. Lauterbach, R.F. Lobo, Appl. Catal. B 102 (2011) 441. - [15] L. Ren, L. Zhu, C. Yang, Y. Chen, Q. Sun, H. Zhang, C. Li, F. Nawaz, X. Meng, F. Xiao, Chem. Commun. 47 (2011) 9789. - [16] F. Liu, H. He, C. Zhang, Chem. Commun. (2008) 2043–2045. - [17] F. Liu, K. Asakura, H. He, Y. Liu, W. Shan, X. Shi, C. Zhang, Catal. Today 164 (2011) 520–527. - [18] F. Liu, H. He, C. Zhang, Z. Feng, L. Zheng, Y. Xie, T. Hu, Appl. Catal. B 96 (2010) 408–420. - [19] Z. Si, D. Weng, X. Wu, J. Li, G. Li, J. Catal. 271 (2010) 43-51. - [20] Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie, S. Wang, Chem. Commun. (2008) 1470–1472. - [21] L. Chen, J. Li, M. Ge, J. Phys. Chem. C 113 (2009) 21177–21184. - [22] Z. Wu, R. Jin, Y. Liu, H. Wang, Catal. Commun. 9 (2008) 2217-2220. - [23] K. Krishna, G.B.F. Seijger, C.M. Bleek, H.P.A. Calis, Chem. Commun. (2002) 2030–2031. - [24] T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, Catal. Commun. 12 (2010) 310–313. - 25] W. Xu, Y. Yu, C. Zhang, H. He, Catal. Commun. 9 (2008) 1453-1457. - [26] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, ChemCatChem 3 (2011) 1286–1289. - 27] F. Liu, H. He, Y. Ding, C. Zhang, Appl. Catal. B 93 (2009) 194–204. - [28] J. Twu, C.J. Chuang, K.I. Chang, C.H. Yang, K.H. Chen, Appl. Catal. B 12 (1997) 309–324. - [29] J. Fang, X. Bi, D. Si, Z. Jiang, W. Huang, Appl. Surf. Sci. 253 (2007) 8952–8961. - [30] K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B 108 (2004) 20204–20212.