Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al₂O₃

Li Zhang, Hong He*

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China

ARTICLE INFO

Article history: Received 7 January 2009 Revised 12 August 2009 Accepted 27 August 2009 Available online 1 October 2009

Keywords: Selective catalytic oxidation NH₃ Ag/Al₂O₃ Mechanism O₂ uptake In situ DRIFTS

ABSTRACT

The mechanism of selective catalytic oxidation (SCO) of NH₃ over Ag/Al₂O₃ was studied by NH₃ temperature-programed oxidation, O₂-pulse adsorption, and in situ DRIFTS of NH₃ adsorption and oxidation. The essence which affects the low temperature activity of Ag/Al₂O₃ has been elucidated through the mechanism study. Different Ag species on Ag/Al₂O₃ significantly influence O₂ uptake by catalysts; while different oxygen species affect the activity of NH₃ oxidation at low temperature. The activated –NH could react with the atomic oxygen (O) at low temperatures (<140 °C); however, the –NH could also interact with the O₂ at temperatures above 140 °C. At low temperatures (<140 °C), NH₃ oxidation follows the –NH mechanism. However, at temperatures above 140 °C, NH₃ oxidation follows an in situ selective catalytic reduction (iSCR) mechanism (two-step formation of N₂ via the reduction of an in situ-produced NO_x species by a NH_x species).

© 2009 Elsevier Inc. All rights reserved.

JOURNAL OF CATALYSIS

1. Introduction

Selective catalytic oxidation (SCO) of ammonia (NH₃) with O₂ to nitrogen gas (N₂) and H₂O at low temperatures is an efficient method to abate NH₃ pollution. This SCO reaction has two important parameters: the selectivity and the application temperature. To rationally develop a process for NH₃ oxidation to N₂ over catalysts, the reaction mechanism must be clarified.

While several studies have examined the SCO process, the mechanism of NH₃ oxidation and N₂ formation is still uncertain. Three major reaction pathways have been proposed for the SCO of NH₃ to N₂ over different catalysts [1-13]. Zawadzki [1] proposed an imide (NH) mechanism in which the first step yields NH, and then the NH reacts with atomic oxygen (O) to form nitroxyl (HNO) and further conversion to N_2 or nitrous oxide (N_2O), or NH could even react with molecular O₂ to produce nitric oxide (NO). This mechanism was mainly supported by the results obtained on Pt or transition metal oxide catalysts [1-5]. Two other insights into the reaction mechanism of NH₃ oxidation have been proposed in recent years [6–13]. One is the SCO by a direct route involving a hydrazinium-type intermediate [7,8]. This mechanism has been reported mainly on the transition metal oxide catalysts such as CuO/Al₂O₃, Fe₂O₃/TiO₂, CrO_x/TiO₂, CoO_x/TiO₂, and CuO/ TiO₂ [7,8]. The other is a two-step mechanism called in situ or "internal" selective catalytic reduction (iSCR), which involves the oxidation of a significant percentage of NH₃ into NO_x species, and

the NO_x species subsequently react with NH₃ to form N₂ [9–11]. Many noble metal catalysts, such as Ag (powder), Pt, Pt/Al₂O₃, Rh/Al₂O₃, Pd/Al₂O₃, Pt-ZSM-5, Pd-ZSM-5, and Rh-ZSM-5, have been suggested to follow this iSCR route [9–11].

Different reaction mechanisms of NH₃ oxidation are reportedly associated with different oxygen species [1,7,14–16]. Zawadzki [1] proposed that O was necessary for the very rapid formation of NH, as well as for the HNO intermediate and N₂O production. The hydrazinium-type intermediate mechanism had been suggested under conditions of little or limited O₂ availability; the only oxygen available was that associated with the metal oxide catalysts, and the catalyst testing was carried out in an essentially reducing environment. At higher O₂ concentrations, NH₃ mainly interacts with molecular O₂ and follows the iSCR mechanism [7,14].

Recently, Gang et al. [11,13] reported that alumina-supported Ag (Ag/Al₂O₃) catalysts were extremely active in NH₃ oxidation at low temperatures, and the performance of the Ag/Al₂O₃ catalyst was even superior to that of noble metal catalysts. We investigated the role of Ag species on Ag/Al₂O₃ in the activity and selectivity of NH₃ oxidation [17]. The state of the Ag species and Ag particle size was found to significantly influence the activity and selectivity of NH₃ oxidation over Ag/Al₂O₃. Ag⁰ was proposed to be the main active species of NH₃ oxidation at low temperatures (<140 °C), whereas Ag⁺ was also active at higher temperatures (>140 °C).

Gang et al. [11,13] revealed that the NH₃ oxidation over the Agbased catalysts followed the iSCR mechanism. They reported that the NH₃ oxidation activity at low temperatures was related to the catalyst's ability to promote dissociative or non-dissociative adsorption of O_2 [11]. However, the roles of different oxygen

^{*} Corresponding author. Fax: +86 10 62923563.

E-mail address: honghe@rcees.ac.cn (H. He).

^{0021-9517/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2009.08.011

species in the activity and the reaction mechanism over the Ag/ Al_2O_3 have not been studied in detail. The role of different oxygen species in the activity and reaction mechanism of NH₃ oxidation over Ag/Al₂O₃ needs to be determined. Since the active species on Ag/Al₂O₃ for NH₃ oxidation are different in different temperature regions [17], investigating the role of different Ag species in the reaction process is important. Such information may be useful in the development of an improved process of NH₃ oxidation over Ag/Al₂O₃.

In this study, the role of different oxygen species in the activity and reaction mechanism of SCO of NH₃ over Ag/Al₂O₃ was studied in detail. O₂-pulse adsorption was used to measure the O₂ uptake on Ag/Al₂O₃. Temperature-programed oxidation (TPO) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were used to clarify the possible reaction mechanisms.

In this article, we have elucidated the essence which affects the low temperature activity of Ag/Al_2O_3 through the mechanism study. Different Ag species significantly influence O_2 uptake by catalysts, and different oxygen species affect low temperature activity and reaction routes. Adsorbed NH₃ mainly interacts with chemisorbed oxygen atom on Ag/Al₂O₃ at low temperatures (<140 °C). In contrast, at temperatures above 140 °C, adsorbed NH₃ can also react with gas phase O₂ to produce N₂. Accordingly, the reaction route of NH₃ oxidation over Ag/Al₂O₃ is different in different temperature regions. At low temperatures (<140 °C), NH₃ oxidation follows the -NH mechanism, while at temperatures above 140 °C, it follows the iSCR mechanism.

2. Materials and methods

2.1. Catalyst preparation

The catalyst used in this study was 10 wt.% Ag/Al₂O₃ prepared by an impregnation method using γ -Al₂O₃ powder (250 m² g⁻¹) and an appropriate amount of AgNO₃ (7.874 mg cm⁻³) aqueous solution. After impregnation, the excess water was removed in a rotary evaporator at 80 °C. The sample was first dried at 120 °C overnight followed by calcination at 600 °C in air for 3 h. The weight ratio of Ag is measured with respect to the support γ -Al₂O₃.

2.2. NH₃ temperature-programed oxidation (NH₃-TPO)

NH₃ temperature-programed oxidation (NH₃-TPO) experiments were carried out over fresh and H2-pretreated Ag/Al2O3 catalysts using a fixed-bed continuous flow micro-reactor system equipped with a computer-interfaced quadruple mass spectrometer (Hiden WR13012 UK). Typically, 100 mg of sample was pretreated by heating in a flowing stream (40 cm³ min⁻¹) of O_2/He (10 vol.%) from room temperature to 500 °C (25 °C min⁻¹). This was done to remove the water and desorb unwanted impurities. The temperature was held at 500 °C for 0.5 h and then cooled to room temperature under flowing gas (O_2/He) . Prior to the NH₃ oxidation, the catalyst was reduced in situ by heating from room temperature to 400 °C (10 °C min⁻¹) in a H₂/Ar (5 vol.%) flow (40 cm³ min⁻¹). Subsequently, the sample was kept at this temperature for 2 h: the temperature was then lowered to 50 °C. followed by a He flushing period for 1 h. At 50 °C, the He flow was switched to a flow of NH₃ 500 ppm, O₂ 10 vol.%, He as carrier for 2 h, and the total flow rate was 100 cm³ min⁻¹. Then the sample temperature was increased from 50 °C to 500 °C at a rate of 10 °C min⁻¹ and the TPO data were recorded with mass spectrometer. A similar experiment, without the H₂ pretreatment prior to the NH₃-TPO, was also performed over fresh Ag/Al₂O₃.

2.3. O₂-pulse adsorption

 O_2 uptake was determined by O_2 -pulse adsorption at various temperatures over the fresh and H₂-pretreated Ag/Al₂O₃ catalysts using a Quantasorb-18 automatic instrument (Quanta Chrome Instrument Co.). Prior to the O₂-pulse adsorption, 300 mg of sample was pretreated in situ with a flow of 5 vol.% H₂/Ar (40 cm³ min⁻¹, 10 °C min⁻¹) at 400 °C for 2 h. Then, He gas (40 cm³ min⁻¹) was passed over the sample for 1.5 h. After cooling to the desired temperature in He, O₂ pulses (4.46 µmol) were then injected in a He carrier over the sample, with a time interval between O₂ pulses of almost 100 s. The O₂ signal was analyzed online with an Autosorb-1-C TCD controller. A similar O₂-pulse adsorption experiment was performed over the fresh Ag/Al₂O₃, without the H₂ pretreatment prior to the O₂-pulse adsorption.

2.4. Fourier transform infrared (FTIR) spectroscopy studies

In situ DRIFTS spectra were recorded in a NEXUS 670-FTIR equipped with a smart collector and a liquid N₂-cooled MCT detector. The sample (about 30 mg) for study was finely ground and placed in a ceramic crucible. A feed gas mixture, controlled by mass flow meters, was supplied at a flow rate of 100 cm³ min⁻¹. The wafers were first treated at 500 °C in a flow of high purity 10 vol.% O₂/N₂ for 0.5 h and then cooled to room temperature. At each temperature, the background spectrum was recorded in flowing N₂ and was subtracted from the sample spectrum obtained at the same temperature. All spectra were recorded at a resolution of 4 cm⁻¹ with 100 accumulated scans.

The isotope experiment was performed in an IR cell, which was connected to a vacuum system, and it could be kept below 10^{-4} Torr by the pump. In this paper, the spectra are displayed in absorbance.

3. Results

3.1. NH₃-TPO

 NH_3 -TPO experiments were performed separately on the fresh and H_2 -pretreated 10 wt.% Ag/Al₂O₃ catalysts to investigate the NH_3 oxidation activity over the two catalysts and the variety of products produced in different temperature regions (Fig. 1). NH_3

Fig. 1. NH₃ temperature-programed oxidation (NH₃-TPO) profiles over fresh (a) and H₂-pretreated (b) 10 wt.% Ag/Al₂O₃ catalysts. Reaction conditions: NH₃, 500 ppm; O₂, 10 vol.%; He as carrier; flow rate, 100 cm³ min⁻¹; catalyst weight, 0.1 g (W/ F = 0.06 g s cm⁻¹).

desorbed over the fresh Ag/Al₂O₃ (Fig. 1a) at temperatures from 50 °C to 300 °C. No product was formed below 140 °C. Upon heating, N₂ was formed/desorbed as the main product from 160 °C to 500 °C; N₂O was the second main product detected in the temperature range (160–350 °C), while at higher temperatures (>350 °C), significant amounts of NO were formed/desorbed. However, over the H₂-pretreated Ag/Al₂O₃ (Fig. 1b), NH₃ desorbed mainly at low temperatures (<160 °C). The selectivity of products of NH₃–TPO strongly depended on the reaction temperature. N₂O and N₂ were the main products detected in the low temperature range (80–160 °C); N₂ was found to be the main reaction product at temperatures above 160 °C, while at higher temperatures (>350 °C), significant amounts of NO were formed.

Compared to the fresh Ag/Al₂O₃, NH₃ could be oxidized at a lower temperature (<140 °C) over the H₂-pretreated Ag/Al₂O₃. Most products of NH₃ oxidation at low temperatures were N₂O and N₂. However, at higher temperatures, the main products of NH₃ oxidization over the fresh and H₂-pretreated Ag/Al₂O₃ catalysts were similar. This demonstrates that H₂ pretreatment enhances the low temperature activity of NH₃ oxidation over Ag/Al₂O₃ and that the low temperature (<140 °C) products are different from those produced at higher temperatures.

3.2. O₂-pulse adsorption

The effect of the O₂-pulse adsorption on the fresh and H₂-pretreated Ag/Al₂O₃ catalysts was investigated to elucidate the O₂ uptake of the catalysts at 100 °C and 160 °C. As seen in Fig. 2, molecular O₂ was readily chemisorbed on the H₂-pretreated Ag/ Al₂O₃; in contrast, little molecular O₂ was adsorbed on the fresh Ag/Al₂O₃.

Gang et al. [11,13] reported that adsorbed oxygen atom appeared on the reduced Ag catalysts, and the dissociation of O_2 was believed to be the rate-controlling step for NH₃ oxidation [13]. Lefferts et al. [18] also detected oxygen atom on a H₂-pre-treated Ag surface, and the molecular O_2 was only present for a short time after removing air from the sample. Based on our O_2 -pulse adsorption results, we conclude that molecular O_2 can be dissociatively chemisorbed on the surface of H₂-pretreated Ag/Al₂O₃

Fig. 2. O₂ uptakes on fresh 10 wt.% Ag/Al₂O₃ and on H₂-pretreated 10 wt.% Ag/Al₂O₃ at various temperatures. Fresh 10 wt.% Ag/Al₂O₃: 100 °C (a), 160 °C (b); H₂-pretreated 10 wt.% Ag/Al₂O₃: 100 °C (c); 160 °C (d). Reaction conditions: O₂, 4.46 µmol/pulse; He as carrier; flow rate, 40 cm³ min⁻¹; catalyst weight, 0.3 g.

Fig. 3. NH_3 -TPO profiles over the fresh 10 wt.% Ag/Al_2O_3 catalyst, reaction conditions: NH_3 , 500 ppm; He as carrier; flow rate, 100 cm³ min⁻¹; catalyst weight, 0.1 g (W/F = 0.06 g s cm⁻¹).

to form O species, while molecular O2 cannot be adsorbed dissociatively on the surface of fresh Ag/Al₂O₃. In conjunction with our TPO results mentioned above (Fig. 1), we found that the NH₃ could be oxidized at a lower temperature (<140 °C) over the H₂-pretreated Ag/Al₂O₃ in the presence of the chemisorbed oxygen atom. However, over the fresh Ag/Al₂O₃, NH₃ could also be oxidized at higher temperatures in the absence of O. Because the molecular O₂ could not be adsorbed on the fresh catalyst, the adsorbed NH₃ mainly interacted with the gas phase O₂ or the lattice oxygen under these conditions. According to our other TPO experiment over fresh Ag/ Al_2O_3 (Fig. 3) in the absence of gaseous O_2 (NH₃-He feed), we found that little product of NH₃ oxidation was formed below 300 °C. The adsorbed NH₃ mainly reacts with the gas phase O₂ over fresh Ag/ Al_2O_3 in the presence of gaseous O_2 . This demonstrates that the oxygen species have a significant influence on the low temperature (<140 °C) activity of NH₃ oxidation over Ag/Al₂O₃. This means that the dissociation of O_2 is the rate-controlling step for NH₃ oxidation.

 Ag^0 is the main Ag species on H₂-pretreated Ag/Al₂O₃, while Ag⁺ is the main Ag species on fresh Ag/Al₂O₃ [17]. The presence of different Ag species on the catalyst clearly affects the chemisorption of O₂. The presence of Ag⁰ caused the adsorption of O species and must have been a reason for the enhanced low temperature activity of NH₃ oxidation over H₂-pretreated Ag/Al₂O₃.

O₂ uptake of H₂-pretreated Ag/Al₂O₃ at 160 °C (76.58 µmol g⁻¹) was higher than that at 100 °C (45.73 µmol g⁻¹). This demonstrates that the chemisorption of O₂ on Ag/Al₂O₃ is affected by temperature, in agreement with other reports [11,18,19].

3.3. FTIR study of NH₃ adsorption

FTIR spectra of the adsorbed species due to contact with the fresh and H₂-pretreated 10 wt.% Ag/Al₂O₃ catalysts at different temperatures with NH₃ are presented in Figs. 4 and 5. As shown in Fig. 4, after the sample was treated with NH₃ at room temperature, the bands were observed at 1695, 1614, 1483, 1389, and 1232 cm⁻¹. The bands at 1695 and 1483 cm⁻¹ were due to the asymmetric and symmetric deformation modes of NH₃ coordinated on Brønsted acid sites (NH₄⁺) [6,20–23], respectively. The band at 1389 cm⁻¹ was observed under similar conditions on Ni/Al₂O₃ by Amblard et al. [6] and on Au/MO_x/ γ -Al₂O₃ by Lin et al. [24]. According to the literature [6,24] and the peak behavior when the sample was heated, the band at 1389 cm⁻¹ could be assigned to NH₄⁺ ad-species on the γ -Al₂O₃ support. The bands at 1614 and 1232 cm⁻¹ could be assigned to the asymmetric

Fig. 4. FTIR spectra of the adsorbed species arising from contact of NH_3 (500 ppm) with the fresh 10 wt.% Ag/Al₂O₃ at room temperature and successive purging with N_2 at various temperatures.

Fig. 5. FTIR spectra of the adsorbed species arising from contact of NH_3 (500 ppm) with the H_2 -pretreated 10 wt.% Ag/Al₂O₃ at room temperature and successive purging with N_2 at various temperatures.

deformation modes of NH_3 coordinated on Lewis acid sites [6,20-23], respectively. Correspondingly, the bands in the NH stretching region were also observed at 3401, 3356, 3270, and 3149 cm⁻¹ [8,14,25].

The intensities of these bands decreased gradually with the increase in the sample temperature (Fig. 4). Upon heating, first, the bands of NH_3 coordinated on Brønsted acid sites disappeared, followed by the bands ascribed to NH_3 coordinated on Lewis acid sites. This desorption sequence seemed to coincide with the expected adsorption strength of these ad-species. The NH_3 coordinated on Lewis acid sites. Desorption of the unreacted NH_3 and the activation of NH_3 were responsible for these decreases. A new weak band was visible at 2160 cm⁻¹ from 160 °C to 220 °C, but vanished at temperatures above 220 °C. The assignment of this new peak will be discussed in the following section.

With increasing temperatures, intensities of three bands, 1581, 1456, and 1377 cm⁻¹, increased following the decrease of the bands assignable to NH_3 . The bands at 1581 and 1377 cm⁻¹ were assigned to amide ($-NH_2$) scissorings and ($-NH_2$) waggings,

$$NH_3 \rightarrow NH_2 + H$$
 (1)

$$NH_2 \rightarrow NH + H$$
 (2)

The same experiment was performed on the H₂-pretreated Ag/ Al₂O₃ catalyst. Similar bands at 1689, 1606, 1477, 1394, and 1244 cm⁻¹ were observed after NH₃ adsorption (Fig. 5). Upon heating, the bands of NH₃ coordinated on Brønsted acid sites disappeared, followed by the bands ascribed to NH₃ coordinated on Lewis acid sites, and finally the band of –NH. A new weak band at 2154 cm⁻¹ was observed from 100 °C to 160 °C, which disappeared at temperatures above 160 °C.

The bands at 2222 cm⁻¹ are reportedly due to N–N stretching modes of gas phase N₂O over the reduced Ag catalyst [26]. A similar band at 2200 cm⁻¹ upon NH₃ oxidation on ZnO has been assigned to adsorbed N₂O [27]. The appearance of more than one form of adsorbed N₂O is often explained by the simultaneous presence of N- and O-bonded molecules and/or by adsorption on different sites. However, the N–O modes of N₂O were not observable in many cases because of the strong bands associated with the substrate. When the N–O modes of adsorbed N₂O were detected, they were registered in the 1262–1220 cm⁻¹ region [28]. As shown in Figs. 4 and 5, a band was observable at 1260 cm⁻¹, but it did not disappear synchronously with the band at 2160 cm⁻¹; hence these two bands should not be assigned to one ad-species. The band at 1260 cm⁻¹ might be due to the shift in the band of NH₃ coordinated at Lewis acid sites (1244, 1232 cm⁻¹).

To assure the correct assignment of the band (2154, 2160 cm⁻¹), we investigated the interaction of N₂O and Ag/Al₂O₃ (the results are shown in Supplementary material). We found that the bands in the 2150–2300 cm⁻¹ region were observable due to the asymmetric N–N–O stretching modes of gas phase N₂O, but they disappeared quickly after purging with N₂ for several minutes. Therefore, the band at 2154 (2160) cm⁻¹ should not be assigned to the gas phase N₂O over the Ag/Al₂O₃. Our results suggest that this band (2154, 2160 cm⁻¹) should be assigned to adsorbed N₂O.

Compared to the results on the fresh Ag/Al₂O₃ (Fig. 4), the bands of NH₃ adsorbed on Brønsted and Lewis acid sites of the H₂-pretreated Ag/Al₂O₃ disappeared at lower temperatures. While the intensity of these bands decreased with a reduction in temperature, the bands of $-NH_2$ (1581, 1377 cm⁻¹) and -NH (1456 cm⁻¹) appeared, indicating that NH₃ adsorbed on H₂-pretreated Ag/ Al₂O₃ can be activated to form $-NH_2$ and -NH intermediates at lower temperatures. Together with our O₂-pulse adsorption results (Fig. 2), this indicates that both adsorbed NH₃ and O₂ can be activated at lower temperatures (<140 °C) on H₂-pretreated Ag/ Al₂O₃, which may explain the enhanced low temperature activity of NH₃ oxidation.

3.4. FTIR study of the interaction of NH₃ with O₂

The NH₃ oxidation mechanism was studied with respect to the behavior of adsorbed NH₃ species interacting with O₂ on the surfaces of fresh and H₂-pretreated 10 wt.% Ag/Al₂O₃ catalysts using in situ DRIFTS. Fig. 6 shows the in situ DRIFT spectra of the fresh Ag/Al₂O₃ in a flow of NH₃ + O₂ at various temperatures. The bands of NH₃ coordinated on Brønsted acid sites (1691, 1487, 1389 cm⁻¹) disappeared at temperatures above 140 °C. However, the bands coordinated on Lewis acid sites (1614, 1232 cm⁻¹) decreased gradually and vanished at higher temperatures (>220 °C). While these band intensities decreased, the band intensity of -NH (1456 cm⁻¹) increased from 100 °C. Three new bands appeared at

Fig. 6. FTIR spectra of the fresh 10 wt.% Ag/Al₂O₃ catalyst treated with a flow of 500 ppm NH₃ + 10 vol.% O_2/N_2 at various temperatures.

Fig. 7. FTIR spectra of the H_2 -pretreated 10 wt.% Ag/Al₂O₃ catalyst treated with a flow of 500 ppm NH₃ + 10 vol.% O₂/N₂ at various temperatures.

1576, 1545, and 1302 cm⁻¹ at temperatures above 140 °C and increased significantly with rising temperature. These bands could be assigned to nitrate ad-species [28,29], and the assignments of different nitrates are discussed in a more detailed manner in the following section.

Fig. 7 shows the results of the similar experiment performed on the H₂-pretreated Ag/Al₂O₃. The bands of NH₃ coordinated on Brønsted acid sites and Lewis acid sites decreased at a lower temperature in the presence of O_2 than without O_2 (Fig. 5). The -NH band (1456 cm⁻¹) appeared at 80 °C and increased significantly at temperatures above 140 °C. The band of adsorbed N₂O (2154 cm⁻¹) was visible from 80 °C to 140 °C. In addition, it could be noted that the band assigned to nitrate ad-species (1302, 1579 cm⁻¹) appeared at 140 °C. The bands at 1579, 1545,1456, and 1302 cm⁻¹ increased significantly when the temperature rose to 160 °C, demonstrating that at higher temperatures (>140 °C) some nitrate ad-species are formed on the H2-pretreated Ag/ Al₂O₃, similar to the results found on the fresh Ag/Al₂O₃ (Fig. 6). However, on the fresh Ag/Al₂O₃ (Fig. 6), no N_2O (2154 cm⁻¹) adspecies appeared with the -NH band (1456 cm⁻¹) at low temperatures (<140 °C). Based on these findings, together with the TPO results (Fig. 1), we conclude that the adsorbed NH₃ could be activated to form -NH and further be converted to produce N₂

and N₂O on the H₂-pretreated Ag/Al₂O₃ at low temperatures (<140 °C; Fig. 7). In contrast, no adsorbed NH₃ was oxidized on the fresh Ag/Al₂O₃ under this condition, although it could have been activated to form some –NH intermediates (Fig. 6).

The presence of surface –NH indicates the dissociative adsorption of NH₃ and/or the presence of H-abstraction on the surface. Our DRIFT results (Fig. 7) showed that at lower temperatures, the bands of adsorbed NH₃ were smaller in the presence of O₂ than without O₂ (Fig. 5). Considering that gas phase O₂ can be chemisorbed as oxygen atom on the surface of H₂-pretreated Ag/Al₂O₃, this indicates that the adsorbed NH₃ is more readily activated to form –NH in the presence of oxygen atom, confirming the previous reports [1]. The first elementary process in NH₃ oxidation on H₂-pretreated Ag/Al₂O₃ is likely the reaction of NH₃ with O as follows:

$$NH_3 + O \rightarrow NH + H_2O \tag{3}$$

As shown in Fig. 7, –NH and the adsorbed N₂O bands were visible at low temperatures (<140 °C); some nitrate ad-species were observed at temperatures above 140 °C, as seen on the fresh Ag/Al₂O₃ (Fig. 6). This clearly shows that over the H₂-pretreated Ag/Al₂O₃, –NH is the key intermediate of NH₃ oxidation at low temperatures (<140 °C), and the SCO pathway at low temperatures is different from the reaction route at temperatures above 140 °C. In contrast, at temperatures above 140 °C, the SCO of NH₃ over fresh and H₂-pretreated Ag/Al₂O₃ catalysts both follow a similar reaction route.

A key role of –NH and –HNO species in NH₃ oxidation was proposed by Zawadzki [1] and supported by Germain and Perez [30]. Zawadzki [1] suggested that on Pt or metal oxide catalysts, the –NH could interact with oxygen atom to form –HNO species; then the –NH and –HNO could react with each other giving rise to N₂, while two –HNO species would be intermediates in N₂O formation. However, we found no band assignable to –HNO (Fig. 7), perhaps because the –HNO reacted quickly.

To discover the –HNO species, the concentration of NH₃ was reduced to lower the reaction rate. First, we evacuated the gaseous NH₃ after exposure of the H₂-pretreated Ag/Al₂O₃ to NH₃ for 1 h to leave the adsorbed NH₃ on the surface of the catalyst. A flow of O₂ was then supplied at various temperatures, and the subsequent spectra were collected (Fig. 8). Upon heating, $-NH_2$ (1371 cm⁻¹) and -NH (1456 cm⁻¹) appeared at temperatures above 70 °C; a new band was observed at 1529 cm⁻¹ from 70 °C to 120 °C (Fig. 8). Similar behavior was observed for adsorbed

Fig. 8. FTIR spectra of the H₂-pretreated 10 wt.% Ag/Al₂O₃ taken after adsorption of NH₃ (500 ppm) at room temperature, followed by purging with N₂ for 30 min and successive heating in 10 vol.% O₂/N₂ at various temperatures.

Fig. 9. FTIR spectra of the adsorbed NH₃ interacting with the ${}^{16}O_2$ and ${}^{18}O_2$ over H₂-pretreated 10 wt.% Ag/Al₂O₃ at 100 °C (The sample was exposed to 20 Torr NH₃ for 30 min firstly, and then it was out gassed and exposed to 30 Torr O₂).

 N_2O (2154 cm⁻¹) with a band at 1529 cm⁻¹; this band may have been an intermediate in the formation of N_2O , and the peak at around 1529 cm⁻¹ was near the reported NO stretching band of -HNO species [7,8,24]. Alternatively, -HNO could be responsible for two bands. The adsorbed -HNO species have been proposed to be responsible for a N=O stretching band in the 1550-1400 cm⁻¹ range, and for a -NH bending band in the 1450-1400 cm⁻¹ region [7]. Since the two bands (1529, 1456 cm⁻¹) appear at the same time, this explanation is likely.

To help identify the –HNO species, the experiments were also conducted with ¹⁸O₂ and ¹⁶O₂ using FTIR. Fig. 9 illustrates the FTIR spectra obtained after either ¹⁸O₂ or ¹⁶O₂ interacting with the adsorbed NH₃ on the H₂-pretreated Ag/Al₂O₃ catalyst at 100 °C. The band near 1529 cm⁻¹ after exposing to ¹⁶O₂ (Fig. 9) was red-shifted to around 1490 cm⁻¹ after replacing with the ¹⁸O₂ (Fig. 9), which implies that this band is due to a species containing oxygen.

This implies that –NH may be converted to –HNO ad-species in the presence of O and that these ad-species must be the intermediates in the formation of N₂ and N₂O at low temperatures. At higher temperatures (>140 °C), the bands of –HNO (1529 cm⁻¹) and adsorbed N₂O (2154 cm⁻¹) vanished synchronously, while the bands of nitrates increased. This result indicates that the reaction route of NH₃ oxidation over Ag/Al₂O₃ is different in different temperature regions.

3.5. FTIR study of NO + O_2 adsorption

FTIR spectra of the adsorption of NO in the presence of O_2 on the H₂-pretreated 10 wt.% Ag/Al₂O₃ at 160 °C were observed to investigate the nitrate ad-species on the catalyst, and the results are shown in Fig. 10a. The bands at 1614, 1579, 1545, 1456, and 1302 cm⁻¹ were detected. In addition, a weak band at 1750 cm⁻¹ was also seen. Based on the previous studies of the NO + O₂ reaction on Al₂O₃ or Ag/Al₂O₃ catalysts, these peaks were tentatively assigned to adsorbed N₂O₄ (1750 cm⁻¹) and monodentate (1545 cm⁻¹), bidentate (1579 cm⁻¹), and bridging (1614 cm⁻¹) nitrates [26,28,31–34]. The bands at 1456 and 1302 cm⁻¹ were close to the IR bands at 1411 and 1302 cm⁻¹ for adsorbed water-solvated surface nitrates on Al₂O₃ [31]. Since the adsorbed water could be removed from the surface by purging with dry N₂ at 160 °C, band intensity of the water-solvated surface nitrates

Fig. 10. FTIR spectra of the adsorbed species arising from NO + O_2 (500 ppm NO, O_2 10 vol.%) adsorption over the H₂-pretreated 10 wt.% Ag/Al₂O₃ at 160 °C (a) and after successive purging with N₂ at 160 °C (b).

would decrease. According to our results (Fig. 10b), the band at 1456 cm^{-1} decreased significantly after purging with N₂, while the band at 1302 cm^{-1} did not vary in intensity. Therefore, the band at 1456 cm^{-1} should be assigned to adsorbed water-solvated surface nitrate ad-species on Ag/Al₂O₃. In addition, it could be noted that this band at 1456 cm^{-1} was in the same region as the –NH band. As shown in Fig. 7, –NH appeared at a lower temperature (80 °C) after NH₃ activation, while the water-solvated surface nitrate ad-species were visible at a higher temperature (160 °C) going with other nitrate ad-species; therefore, they should be assigned to different ad-species at different temperatures. The band at 1302 cm⁻¹ was also close to that of bidentate nitrate on Ag/Al₂O₃ [32,33]; thus we are inclined to assign this band to bidentate nitrate.

According to our FTIR spectra results on NH₃ oxidation (Figs. 6 and 7), the bands assignable to nitrate ad-species (1614, 1579, 1545, 1456, and 1302 cm⁻¹) appeared in the same regions as NO + O_2 ad-species. This result indicates that adsorbed NH₃ could be oxidized to form NO and adsorbed as nitrate ad-species on the catalysts in the presence of O_2 .

It could be noted that a band (1614 cm^{-1}) of bridging nitrates was located at the same position as the asymmetric deformation modes of NH₃ coordinated on the Lewis acid sites, which may explain the appearance of this peak at higher temperatures while the

Fig. 11. FTIR spectra of the surface species arising from the interaction of NH_3 (500 ppm) with the in situ-formed NO_x on the H_2 -pretreated 10 wt.% Ag/Al₂O₃ at 160 °C.

other bands (1232, 1244 cm^{-1}) of NH₃ coordinated on the Lewis acid site disappeared (Figs. 6 and 7).

3.6. Interaction of NH_3 with the in situ-formed NO_x

To elucidate the reaction pathway, the interaction of NH₃ with the in situ-formed NO_x species was investigated as follows: first, NO_x ad-species were formed in situ on the H₂-pretreated Ag/ Al₂O₃ by exposing the catalyst to NH₃ and O₂ at 160 °C for 1 h. Then the sample was purged with N₂ at this temperature for 0.5 h. Finally, 500 ppm of NH₃ was introduced when the in situ DRIFTS spectra were recorded. As shown in Fig. 11, the bands attributable to nitrate ad-species (1614, 1579, 1545, 1456, 1302 cm⁻¹) were observed after exposing the Ag/Al₂O₃ to NH₃ and O₂ at 160 °C for a brief period. Following NH₃ inflow for 1 min, the monodentate nitrate band (1545 cm^{-1}) vanished, indicating that NH₃ reacted with the NO_x ad-species quickly. However, the intensity of the bands $(1579, 1302 \text{ cm}^{-1})$ attributable to bidentate nitrates only decreased slightly during this period. Therefore, we conclude that NO_x adsorbed as monodentate nitrate reacted more favorably with NH_x compared to the other nitrate ad-species. This result clearly indicates that the SCO of NH₃ on the H₂-pretreated Ag/Al₂O₃ at this temperature follows an iSCR mechanism, which involves the oxidation of a significant percentage of NH₃ into NO_x species, along with adsorbed NO_x species interacting with NH_x and being reduced to N₂ with N₂O as a by-product. The in situ-formed NO is the intermediate of this iSCR mechanism.

The bands assignable to NH_3 ad-species (1697, 1614, 1478, and 1398 cm⁻¹) appeared on Ag/Al₂O₃ following NH_3 inflow, as shown in Fig. 11. Their intensity increased with the exposure time. However, the bands at 1529 and 1456 cm⁻¹ assignable to –HNO species increased at the same time. Together with our results mentioned above, this indicates that the adsorbed –NH might have interacted with the previously adsorbed surface O to form –HNO species under this condition.

4. Discussion

4.1. NH₃ adsorption

As shown in Figs. 4 and 5, with the adsorption of NH_3 and an increase in temperature, $-NH_2$ and -NH intermediates appeared and

the bands assignable to adsorbed N₂O (2160, 2154 cm⁻¹) were observed in the absence of O₂. Other studies have found that in the absence of O₂, activated –NH could also interact with lattice oxygen (O²⁻) to produce a small quantity of N₂O [7,8,14]. Our results (Figs. 4 and 5) demonstrate that in the absence of O₂, NH₃ can dehydrogenate to form –NH₂ and –NH intermediates and produce some products; however, this kind of reaction would not be sustainable under O₂-free conditions and will not be discussed here in detail.

Based on the in situ DRIFTS results of NH₃ oxidation (Fig. 6) on the surface of fresh Ag/Al₂O₃, the bands of NH₃ coordinated on Brønsted acid sites disappeared at 140 °C, while the bands coordinated on Lewis acid sites decreased gradually at higher temperatures. However, our NH₃-TPO (Fig. 1) and in situ DRIFTS (Fig. 6) results showed that over the fresh catalyst, the adsorbed NH₃ could hardly be oxidized at low temperatures (<140 °C). Therefore, the NH₃ coordinated on Brønsted acid sites had no influence on the activity; only the NH₃ coordinated on Lewis acid sites contributed to this reaction activity. A similar result was found on the H₂-pretreated Ag/Al₂O₃ (Fig. 7). These results indicate that Brønsted acid sites are not necessary for NH₃ oxidation, in agreement with the previous findings in the literature [7,8,14].

4.2. Interaction of NH_3 with O_2

4.2.1. Interaction of NH₃ with O_2 at low temperatures (<140 °C)

It has been (Figs. 7 and 8) demonstrated that the reaction pathway at low temperatures (<140 °C) over H₂-pretreated Ag/Al₂O₃ is totally different from the route at temperatures above 140 °C. Oxygen atom has been found to be chemisorbed on the surface of H₂pretreated Ag/Al₂O₃, and it is more active than the gaseous O₂ or lattice oxygen (O²⁻). At low temperatures (<140 °C), O reacts more favorably with–NH to form –HNO intermediates (Fig. 8). The –NH and –HNO are the key intermediates of the –NH mechanism. Zawadzki [1] previously proposed the –NH mechanism, but provided no evidence of the –NH and –HNO intermediates or O₂ chemisorption. Since both the O₂ chemisorption and the intermediates of – NH and –HNO were detected in our experiments, we are inclined to attribute the low temperature reaction pathway of NH₃ oxidation over Ag/Al₂O₃ to the –NH mechanism. The main reaction routes at low temperatures (<140 °C) are as follows:

$$O_2 \rightarrow 20$$
 (4)

 $NH + O \rightarrow HNO$ (5)

 $NH + HNO \rightarrow N_2 + H_2O \tag{6}$

 $HNO + HNO \rightarrow N_2O + H_2O \tag{7}$

4.2.2. Interaction of NH_3 with O_2 at high temperatures (>140 °C)

At higher temperatures (>140 °C), NH₃ oxidation over H₂-pretreated Ag/Al₂O₃ does not follow the -NH mechanism (Figs. 7 and 8) mentioned above. Under this condition (>140 °C), the interaction of NH₃ with O₂ caused the formation of NO_x ad-species on the Ag/Al₂O₃, and the in situ-formed NO_x species could react quickly with NH₃ following NH₃ inflow (Fig. 11). Ramis et al. [14] proposed an SCR route; i.e., in the presence of NO, the -NH₂ would react with NO to produce N2, and -NH would react with NO to produce N₂O as a by-product. Zawadzki [1] also suggested that -NH would react with molecular O₂ to produce NO at higher temperatures, but the author did not propose the in situ reaction between the NO and $-NH_x$. Since the key intermediate (NO_x) of the SCR routes proposed by Ramis et al. [8,14,35-38] was detected in our experiment (Figs. 6 and 7), and the NH₃ could rapidly react with the in situ-formed NO_x ad-species (Fig. 11), we are inclined to accept that the NH₃ oxidation over Ag/Al₂O₃ at higher temperatures (>140 °C) follows the iSCR mechanism. The reaction pathways are as follows:

$NH + O_2 \rightarrow NO + OH$	(8)
$NH_2 + NO \rightarrow N_2 + H_2O$	(9)
$NH + NO \rightarrow N_2O + H$	(10)
$H + OH \to H_2O$	(11)

A possible role of molecular O_2 in NH₃ oxidation to produce NO_x has also been proposed in the literature [1,8] but may require higher temperatures compared to the interaction of NH₃ with oxygen atom, which is in agreement with our above-mentioned results.

We found that O₂ could also be adsorbed dissociatively to form surface oxygen atom on H₂-pretreated Ag/Al₂O₃ at higher temperatures (160 °C; Fig. 2), and the coverage of active oxygen species increases with an increase of temperature up to160 °C. Fig. 8 shows that the adsorbed NH₃ could be quickly activated to form -NH intermediates via reaction (3) in the presence of oxygen atom. However, at higher temperatures (>140 °C), the -NH mainly interacted with the oxygen species to form NO intermediates (Fig. 8). This demonstrates that the increase of the ratio (O/NH) favors the formation of NO at higher temperatures. We could infer that the adsorbed NH_3 interacted with oxygen atom and gaseous O_2 at the same time over H₂-pretreated Ag/Al₂O₃ at higher temperatures (>140 °C). Firstly, the oxygen atom activated the adsorbed NH₃ to form -NH intermediates, and then the formed -NH interacted with the oxygen atom or gaseous O_2 to produce NO_x ad-species under this condition. However, at low temperatures (<140 °C), the adsorbed NH₃ mainly interacts with oxygen atom. This may explain the different reaction mechanisms of NH₃ oxidation over H₂pretreated Ag/Al₂O₃ at low temperatures (<140 °C) and at temperatures above 140 °C.

It could be noted that at temperatures above 350 °C (Fig. 1) a significant amount of NO desorbed/formed over the Ag/Al₂O₃, primarily because at higher temperatures (>350 °C), the in situ-formed NO_x could directly desorb as one of the products.

 Ag^0 has been proposed as the main active species on the Ag/Al_2O_3 in the oxidation of NH_3 at low temperatures (<140 °C), while Ag^+ could also be the active species at temperatures above 140 °C [17]. In this study, we found that both adsorbed NH_3 and O_2 could be activated by Ag^0 , which explains the enhanced low temperature activity. However, the role of Ag^+ on the Ag/Al_2O_3 in NH_3 oxidation is only to activate the adsorbed NH_3 .

5. Conclusions

Chemisorbed oxygen atom enhances the low temperature (<140 °C) activity of NH₃ oxidation over Ag/Al₂O₃; in contrast, gas phase O₂ mainly interacts with adsorbed NH₃ at temperatures above 140 °C. The pathway of NH₃ oxidation over Ag/Al₂O₃ at low temperatures (<140 °C) differs from that at temperatures above 140 °C. At low temperatures (<140 °C), NH₃ oxidation follows the –NH mechanism. That is, the adsorbed NH₃ first reacts with oxygen atom to form a –NH intermediate. Then the –NH interacts with the chemisorbed oxygen atom to form a –HNO intermediate. The interaction of –NH and –HNO would produce N₂ and H₂O directly, while two –HNO would interact to form a N₂O by-

product. At temperatures above 140 °C, the SCO of NH₃ follows an iSCR mechanism. That is, the –NH mainly reacts with molecular O_2 to form NO. Then, the in situ-formed NO interacts with the NH_x and is reduced to N₂, with N₂O as a by-product.

Acknowledgments

This work was financially supported by the Chinese Academy of Sciences (KZCX1-YW-06-04) and the National Natural Science Foundation of China (10735090).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jcat.2009.08.011.

References

- [1] J. Zawadzki, Disc. Faraday Soc. 8 (1950) 140.
- [2] N.I. Il'chenko, G.I. Golodets, J. Catal. 39 (1975) 7.
- [3] N.I. Il'chenko, G.I. Golodets, J. Catal. 39 (1975) 73.
- [4] N.I. Il'chenko, Russ. Chem. Rev. 45 (1976) 1119.
- [5] J.M. Bradley, A. Hopkinson, D.A. King, J. Phys. Chem. 99 (1995) 7032.
- [6] M. Amblard, R. Burch, B.W.L. Southward, Catal. Today 59 (2000) 365.
- [7] L.I. Darvell, K. Heiskanen, J.M. Jones, A.B. Ross, P. Simell, A. Williams, Catal. Today 81 (2003) 681.
- [8] J.M.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B 13 (1997) 45.
 [9] L. Chmielarz, P. Kuśtrowski, A. Rafalska-Łasocha, R. Dziembaj, Appl. Catal. B 58 (2005) 235.
- [10] G. Qi, J.E. Gatt, R.T. Yang, J. Catal. 226 (2004) 120.
- [11] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, Appl. Catal. B 40 (2003) 101.
- [12] G. Qi, R.T. Yang, Appl. Catal. A 287 (2005) 25.
- [13] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, J. Catal. 199 (2001) 107.
- [14] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal. 157 (1995) 523.
- [15] J.L. Gland, V.N. Korchak, J. Catal. 53 (1978) 97.
- [16] V.A. Kondratenko, M. Baerns, Catal. Today 121 (2007) 210.
- [17] L. Zhang, C. Zhang, H. He, J. Catal. 261 (2009) 101.
- [18] L. Lefferts, J.G. van Ommen, J.R.H. Ross, Appl. Catal. 31 (1987) 291.
- [19] C. Rehren, M. Muhler, X. Bao, R. Schlogl, G. Ertl, Zeitschrift f
 ür Physikalische Chemie 174 (1991) 11.
- [20] M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 30 (2001) 101.
- [21] G. Ramis, M.A. Larrubia, G. Busca, Top. Catal. 11/12 (2000) 161.
- [22] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 208.
- [23] H. Zou, J. Shen, Thermochim. Acta 351 (2000) 165.
- [24] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90 (2004) 3.
- [25] S. He, C. Zhang, M. Yang, Y. Zhang, W. Xu, N. Cao, H. He, Sep. Purif. Technol. 58 (2007) 173.
- [26] J. Műslehiddinoğlu, M. Albert Vannice, J. Catal. 217 (2003) 442.
- [27] V.A. Matyshak, O.V. Krylov, Catal. Today 25 (1995) 1.
- [28] K.I. Hadiiivanov. Catal. Rev. 42 (182) (2000) 71.
- [29] X. Wang, H. Chen, W.M.H. Sachtler, J. Catal. 197 (2001) 281.
- [30] J.E. Germain, R. Perez, Bull. Soc. Chim (France) (1972) 2042.
- [31] G.M. Underwood, T.M. Miller, V.H. Grassian, J. Phys. Chem. A 103 (1999) 6184.
- [32] H. He, X. Zhang, Q. Wu, C. Zhang, Y. Yu, Catal. Surv. Asia 12 (2008) 38.
- [33] X. Zhang, H. He, H. Gao, Y. Yu, Spectrochim. Acta Part A: 71 (2008) 1446.
- [34] T. Venkov, K. Hadjiivanov, D. Klissurski, Phys. Chem. Chem. Phys. 4 (2002)
- 2443
- [35] M. Trombetta, G. Ramis, G. Busca, B. Montanari, A. Vaccari, Langmuir 13 (1997) 4628.
- [36] D.P. Sobczyk, E.J.M. Hensen, A.M. de Jong, R.A. van Santen, Top. Catal. 23 (2003) 109.
- [37] T. Curtin, F. O' Regan, C. Deconinck, N. Knüttle, B.K. Hodnett, Catal. Today 55 (2000) 189.
- [38] G. Ramis, L. Yi, G. Busca, Catal. Today 28 (1996) 373.