

Available online at www.sciencedirect.com

Catalysis Communications 8 (2007) 187-192

www.elsevier.com/locate/catcom

Hydrogen promotes the selective catalytic reduction of NO_x by ethanol over Ag/Al_2O_3

Xiuli Zhang ^{a,b}, Hong He ^{a,b,*}, Zichuan Ma ^a

^a College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016, China

^b State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences,

Chinese Academy of Sciences, Beijing 100085, China

Received 18 February 2006; received in revised form 3 June 2006; accepted 6 June 2006 Available online 16 June 2006

Abstract

To understand the effect of H_2 on the selective catalytic reduction of NO_x with C_2H_5OH over Ag/Al_2O_3 , surface intermediates were examined using in situ DRIFTS spectra, and by-products were identified using GC–MS. Results showed that H_2 addition promoted the partial oxidation of C_2H_5OH to form enolic species, and enhanced the reaction of -NCO with $NO + O_2$ at low temperature. We propose that the enhancement of the enolic species was the main contributor in accelerating NO_x reduction under the presence of H_2 over Ag/Al_2O_3 at low temperatures.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Selective catalytic reduction; Ag/Al₂O₃; Enolic species; H₂; In situ DRIFTS; GC-MS

1. Introduction

Ag/Al₂O₃ is known as one of the most effective catalysts for the selective catalytic reduction (SCR) of NO_x by reductants such as hydrocarbons and oxygenated organic compounds [1–4]. In particular, C₂H₅OH is extremely effective for NO_x reduction over Ag/Al₂O₃, which displays high tolerances to water and SO₂ [1,4–6]. However, the activity of Ag/Al₂O₃ for the SCR of NO_x by C₂H₅OH in the low temperature range is still insufficient to be considered as a potential method for NO_x abatement from exhaust gases of diesel engines. Nevertheless, a recent report [7] indicated that the addition of hydrogen to the feed gas resulted in a remarkable improvement of the NO_x reduction at temperatures below ca. 623 K using a series of lower alkanes (alkenes) as reductants. Using in situ FTIR spectroscopy, it was discovered that the formation of some intermediates, such as acetate, nitrite, nitrate species, and isocyanate (–NCO), was promoted by the addition of H₂ over Ag/Al₂O₃ surface in the SCR of NO_x with several hydrocarbons [7–10]. However, the SCR of NO_x by oxygenates in the presence of H₂ has not been reported.

Our previous studies proposed a possible reaction mechanism for the SCR of NO_x by C₂H₅OH over Ag/Al₂O₃ [11]. As an important intermediate, the novel enolic surface species originated from the partial oxidation of C₂H₅OH was identified on Ag/Al₂O₃. This species was highly reactive towards NO + O₂ to form the crucial intermediate —NCO and related with the high efficiency of NO_x reduction.

The present study aims at investigating the possible promotion effect of H_2 on the SCR of NO_x by C_2H_5OH .

2. Experimental

2.1. Catalyst preparation

The alumina-supported silver catalyst (4% Ag/Al₂O₃) was prepared by an impregnation of γ -Al₂O₃ powder

^{*} Corresponding author. Address: State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Tel.: +86 10 62849123; fax: +86 10 62923563.

E-mail address: honghe@rcees.ac.cn (H. He).

^{1566-7367/\$ -} see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.catcom.2006.06.005

 $(200 \text{ m}^2/\text{g})$ with an appropriate amount of silver nitrate aqueous solution. The sample was dried at 393 K overnight and calcined at 873 K for 3 h in air. The catalysts were then sieved into 20–40 meshes before use.

2.2. Catalytic tests

The catalytic activity measurement over Ag/Al₂O₃ was carried out in a fixed-bed reactor connected to a temperature controller. A basic gas mixture consisting of 800 ppm NO, 1565 ppm C₂H₅OH, 10% O₂, and 10% H₂O in N₂ was used in the activity tests. The total gas flow rate was 2000 mL/min over 0.6 g catalyst (W/F = 0.018 g s cm⁻³, GHSV = ~50,000 h⁻¹). The effect of hydrogen was studied by adding 1% H₂ to the basic gas mixture. NO_x conversion was analyzed on-line by a chemiluminescene NO/NO₂/NO_x analyzer (42C-HL, Thermo Electron).

2.3. Products analysis

The gas products were analyzed using gas chromatography (Agilent 6890N GC) coupled to a mass spectrometer (Agilent 5973N MS) with a capillary column HP-PLOT Q (Agilent 30 m \times 0.32 mm, 20 µm film).

2.4. In situ diffuse reflectance infrared Fourier transform spectroscopy procedure

In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra were recorded on a Nexus 670 (Thermo Nicolet) FT-IR, equipped with an in situ diffuse reflection chamber and a high sensitivity MCT/A detector cooled by liquid nitrogen. The Ag/Al₂O₃ catalyst for in situ DRIFTS study was finely ground and placed into a ceramic crucible. Prior to recording each DRIFTS spectrum, Ag/Al₂O₃ catalyst was heated in situ in $O_2 + N_2$ flow for 60 min at 573 and 873 K, respectively, then cooled to the desired temperature for taking the reference spectrum. All gas mixtures were fed at a flow rate of 300 mL/min. All spectra were measured with a resolution of 4 cm⁻¹ and with an accumulation of 100 scans.

3. Results and discussion

3.1. Effect of H_2 on the catalytic activity

Figs. 1(a) and (b) show the NO_x conversions for the C₂H₅OH-SCR of NO_x without or with 1% H₂ over Ag/Al₂O₃ catalyst at various temperatures. The NO_x conversion in the feed gas without H₂ was less than 20% at 473 K, but reached the maximum of 97% at 630 K, as shown in Fig. 1(a). Clearly, the reduction of NO_x was significantly enhanced by the addition of H₂, especially in the low temperature range of 423–523 K, as shown in Fig. 1(b). It is notable that H₂ addition increased NO_x conversion by ca. 85% at 473 K and up to 90% over a wide temperature range of 493–740 K. Compared with the case without H₂,

Fig. 1. NO_x conversion (a, b) and CO₂ yield (c, d) for the SCR of NO_x by C₂H₅OH over Ag/Al₂O₃ catalyst in the absence of H₂ (a, c) and presence of 1% H₂ (b, d). Reaction conditions: NO, 800 ppm; C₂H₅OH, 1565 ppm; O₂, 10%; H₂O, 10% in N₂ balance at total flow rate 2000 mL/min, GHSV = 50,000 h⁻¹.

the NO_x conversion with H₂ was not significantly different from that without H₂ at temperatures higher than 623 K, indicating that H₂ is more efficient in increasing the NO_x conversion at low temperatures than high temperatures. Figs. 1(c) and (d) show the C₂H₅OH conversion to CO₂ during the C₂H₅OH-SCR of NO_x over Ag/Al₂O₃ catalyst. Compared with the case without H₂, the presence of H₂ also greatly promoted the oxidation of C₂H₅OH to CO₂.

3.2. GC-MS analysis

GC-MS analyses of the gaseous products were performed between 423 and 623 K after steady state in the reaction of $NO + C_2H_5OH + O_2$ was reached in the absence or the presence of H₂, as shown in Figs. 2(a) and (b). The light gaseous molecules such as CO₂, N₂O, N₂, and CO were detected within 5 min retention time. The oxygen- and nitrogen-containing compounds were produced during the SCR of NO_x with C_2H_5OH accompanied with the main products N₂, CO₂ and H₂O. Therefore, it is possible to postulate a reaction pathway by following the origin of minor products even though their concentrations were very low in comparison with N_2 , CO_2 and H_2O . In the absence of H₂, as shown in Fig. 2(a), a small amount of CH₃CHO was detected along with a large amount of unreacted C₂H₅OH, but no other nitrogen-containing compounds were observed at 423 K. The intensity of the CH₃CHO peak increased gradually from 423 to 523 K, and then decreased with further increasing temperature. Considering that the conversions of NO_x and C_2H_5OH were very low at both 423 and 473 K, as shown in Figs. 1(a) and (c), CH₃CHO likely originated from the partial oxidation of C₂H₅OH by molecular oxygen. At 523 K, where ca. 30% NO_x conversion was achieved (Fig. 1(a)), the production of CH₃CHO was maximized and CH₃NO₂ markedly appeared. At 573 K, CH₃CN appeared, accompanied with a disappearance of CH₃NO₂.

During the NO_x reduction by C_2H_5OH with the addition of H₂, CH₃CHO was produced significantly and the amount of CH₃CHO reached its maximum at 423 K, along with the appearance of CH_3NO_2 (Fig. 2(b)). These results were also reasonable if the NO_x and C_2H_5OH conversions in Figs. 1(b) and (d) were considered. At 473 K, the disappearance of C₂H₅OH and the traces of CH₃CHO and CH₃NO₂ under this condition suggested that the reaction proceeded efficiently. In comparison with Figs. 2(a) and (b), it is obvious that the presence of H_2 promoted the formation of oxygen-containing molecules (such as CH₃CHO) and nitrogen-containing molecules (such as CH₃NO₂) during the SCR of NO_x by C_2H_5OH even at a temperature as low as 423 K. On the other hand, the addition of H_2 improved the efficiency of NO_x reduction, and reduced the emission of CH₃CHO gas at temperatures above 473 K.

Based on the analysis of gaseous products, we surmise that the addition of H₂ significantly promoted the partial oxidation of C₂H₅OH to CH₃CHO. As we previously proposed, enolic surface species (RCH=CH-O⁻)-M was formed when CH₃CHO adsorbed on the surface of Ag/ Al₂O₃ [11,12]. The formation of enolic surface species could be attributed to the CH₃CHO isomerization between the gaseous phase and catalyst surface. The enolic species is related to the high efficiency of NO_x reduction by C₂H₅OH over Ag/Al₂O₃. Thereby, we studied the partial oxidation of C₂H₅OH on Ag/Al₂O₃ in the presence of H₂ and its effect on the SCR of NO_x using in situ DRIFTS.

3.3. FT-IR studies

3.3.1. Dynamic changes of in situ DRIFTS study of the partial oxidation of C_2H_5OH in the presence of H_2

The effect of hydrogen on the formation of oxygenated species was studied by in situ DRIFTS at 423 K. Fig. 3 shows the in situ DRIFTS spectra of Ag/Al_2O_3 in a flow of $C_2H_5OH + O_2$ and then $C_2H_5OH + O_2 + H_2$. After exposing Ag/Al_2O_3 to a flow of $C_2H_5OH + O_2$ for

30 min, the peaks at 1635, 1579, 1460, and 1392 cm⁻¹ were detected. The strong bands at 1579 and 1460 cm⁻¹ were attributed to $v_{as}(OCO)$ and $v_s(OCO)$ of adsorbed acetate,

respectively [13]. The peak at 1392 cm^{-1} was assigned to $\delta(\text{C-H})$ of adsorbed acetate [14]. Based on our previous studies [4,11,12], the weak peak at 1635 cm⁻¹ could be assigned to $v_{as}(\text{RCH=C-O})$ of a surface enolic structure, derived from the partial oxidation of C₂H₅OH. The bands assignable to acetate were predominant at 423 K in the

Fig. 3. Dynamic changes of in situ DRIFTS spectra of Ag/Al₂O₃ as a function of time in a flow of $C_2H_5OH + O_2 + H_2$ at 423 K. Before the measurement, the catalyst was pre-exposed to a flow of $C_2H_5OH + O_2$ for 30 min at 423 K. Conditions: C_2H_5OH , 1565 ppm; O₂, 10%; H₂, 1%.

absence of H₂. When H₂ was added to the flow of $C_2H_5OH + O_2$ at the same temperature, the bands due to adsorbed acetate (1579 and 1460 cm⁻¹) and δ (C–H) (1392 cm^{-1}) were similarly observed. However, it should be noted that the peak at 1635 cm^{-1} (attributed to enolic species) intensified gradually as a function of time, accompanied by the appearance of the peaks at 1417 and 1336 cm⁻¹. The bands at 1417 and 1336 cm⁻¹ were attributed to $v_s(RCH=C-O)$ and $\delta(C-H)$ of the enolic species, respectively [4,11,12]. After flowing H₂ for 30 min, the peak at 1635 cm^{-1} achieved its maximum intensity, indicating that enolic species became the predominant surface species. On the basis of these observations, it is suggested that the presence of H₂ might have promoted the partial oxidation of C₂H₅OH, especially the formation of enolic species at 423 K.

3.3.2. Dynamic changes of in situ DRIFTS study of the SCR of NO_x by C_2H_5OH in the presence of H_2

To elucidate the effect of H₂ on the SCR of NO_x, we investigated the reaction intermediates on the Ag/Al₂O₃ at 473 K by DRIFTS. Fig. 4 shows the in situ DRIFTS spectra of Ag/Al₂O₃ in a flow of C₂H₅OH + NO + O₂ and then C₂H₅OH + NO + O₂ + H₂. After pre-exposing the catalyst to a flow of C₂H₅OH + NO + O₂ for 60 min, the strong bands at 1591 and 1304 cm⁻¹ assigned to bidentate nitrates (NO₃⁻) and the bands at 1576 and 1466 cm⁻¹ assigned to acetate were observed [13,14]. In addition, the band at 1633 cm⁻¹ which is associated with enolic species appeared. By examining the intensity of each peak under

Fig. 4. Dynamic changes of in situ DRIFTS spectra of Ag/Al_2O_3 as a function of time in a flow of $C_2H_5OH + NO + O_2 + H_2$ at 473 K. Before the measurement, the catalyst was pre-exposed to a flow of $C_2H_5OH + NO + O_2$ for 60 min at 473 K. Conditions: NO, 800 ppm; C_2H_5OH , 1565 ppm; O_2 , 10%; H_2 , 1%.

a flow of $C_2H_5OH + NO + O_2$, the nitrates (1591 and 1304 cm⁻¹) appeared to dominate on Ag/Al₂O₃ at this temperature. After adding H₂ to the mixture of $C_2H_5OH + -NO + O_2$, the bands of adsorbed bidentate nitrate (1591 and 1304 cm⁻¹) and acetate (1576 and 1466 cm⁻¹) were still visible at the same temperature. The surface concentration of the enolic species (1633, 1417 and 1336 cm⁻¹) increased significantly with time, and the peaks associated with this species became the most intense among all absorbed species peaks in 20 min. This result strongly suggests that the presence of H₂ facilitates the formation of enolic species during the NO_x reduction by C₂H₅OH even at very low temperature. Another obvious difference was that the bands for surface bidentate nitrates (1591 and 1304 cm⁻¹) clearly

decreased with time, indicating low steady state nitrate coverage in the presence of H₂. According to our previous studies [4,11,12], the high reactivity between enolic species and NO₃⁻ is related with high efficiency of NO_x reduction using C₂H₅OH as a reductant. Considering the relatively high surface concentration of enolic species and its high reactivity towards nitrates, it is also reasonable that the intensity of nitrates decreases in the presence of H₂.

To obtain further information on the effect of H_2 on the whole reaction, the reactions of -NCO with $NO + O_2$ with and without the addition of H_2 were further investigated by in situ DRIFTS. After pre-treating the sample in $C_2H_5OH + NO + O_2$ for 60 min at 523 K as shown in Figs. 5(a) and (b), the peak at 2233 cm⁻¹ for -NCO and the

Fig. 5. Dynamic changes of in situ DRIFTS spectra of Ag/Al₂O₃ in a flow of NO + O₂ (a) and in a flow of NO + O₂ + H₂ (b) as a function of time at 523 K. Before the measurement, the catalyst was pre-exposed to a flow of $C_2H_5OH + NO + O_2$ for 60 min at 523 K. Conditions: NO, 800 ppm; C_2H_5OH , 1565 ppm; O₂, 10%; H₂, 1%.

peak at 2154 cm^{-1} for -CN were observed [13,15]. As seen in Fig. 5(a), when C_2H_5OH flow was interrupted, continual monitoring of the adsorbed species in the flow of $NO + O_2$ revealed that -NCO and -CN did not react with $NO + O_2$ in 30 min at 523 K. However, as shown in Fig. 5(b), the intensity of the adsorbed -NCO bands decreased and completely disappeared in 20 min, indicating a strong reactivity of the adsorbed -NCO species in the flow of $NO + O_2 + H_2$ at this temperature. It is noticeable that a new peak at 1612 cm^{-1} in Fig. 5(b) gradually showed up accompanied with the disappearance of -NCO, and this new peak may be due to a deformation mode of adsorbed NHx [16,17]. At the same time, a weak peak was also observed at 3450 cm^{-1} , which may be assigned to the stretching vibration mode of NH species [18]. Based on the results above, the consumption of -NCO species may be related with rapid hydrolysis of -NCO species in the flow of $NO + O_2 + H_2$, resulting in the formation of NHx species. In addition, the intensity of enolic species (1633 cm^{-1}) decreased in NO + O₂ + H₂ after -NCO disappeared, indicating that the enolic species was also reactive in $NO + O_2 + H_2$.

3.4. Mechanism analysis

In the absence of H₂, the SCR of NO_x by C_2H_5OH starts with the formation of both adsorbed nitrates via NO oxidation by O2 and enolic and acetate species via the partial oxidation of C₂H₅OH over Ag/Al₂O₃. The reaction between the nitrates and enolic species (and/or acetate) then leads to the formation of -NCO, which reacts with $NO + O_2$ and nitrates to yield N_2 [4,11,12]. Combining the results of this experiment with the mechanism proposed above, we summarize a simplified reaction scheme for the NO_{x} reduction by $C_{2}H_{5}OH$ in the presence of H_{2} . As shown in Scheme 1, the presence of H_2 first promotes the partial oxidation of C2H5OH to enolic species. Because the high reactivity of enolic species with nitrates is related with the high efficiency of NO_x reduction, the addition of H₂ improves the reaction activity. On the other hand, when H_2 was added to the NO + O₂ feed gas, a rapid consumption of -NCO was observed (Fig. 5(b)), possibly because the hydrolysis of -NCO by hydroxyl groups formed in

Scheme 1. The possible effect of H_2 on the SCR of NO_x by C_2H_5OH over Ag/Al_2O_3 .

the flow of $NO + O_2 + H_2$ resulted in the formation of NHx species. In fact, the -NCO hydrolysis products (NHx and NH₃) were observed by in situ DRIFTS spectra in this experiment (Fig. 5(b)). The resulting NHx species are known to be highly active towards NO_x reduction when using NH₃ as a reductant over Ag/Al₂O₃ in the presence of H₂ [19]. Therefore, the formation of NHx species may be another reason that the addition of H₂ improves the reaction activity. While the influence of H₂ may not be exactly the same as the influence of OH/H₂O for -NCO hydrolysis, the particularity of the Ag/Al₂O₃ catalyst may also play an important role.

4. Conclusion

The selective catalytic reduction of NO_x with ethanol over Ag/Al_2O_3 was promoted by the addition of H_2 to the mixture of $C_2H_5OH + NO + O_2$ at low temperatures. Based on the experimental results, we propose that the addition of H_2 improves NO_x reduction by promoting the formation of the enolic species and enhancing the reactivity of -NCO.

Acknowledgement

This work was financially supported by the National Science Fund for Distinguished Young Scholars of China (20425722).

References

- [1] T. Miyadera, Appl. Catal. B 2 (1993) 199.
- [2] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283.
- [3] A. Satsuma, K. Shimizu, Prog. Energ. Combust. 29 (2003) 71.
- [4] H. He, Y. Yu, Catal. Today 100 (2005) 37.
- [5] S. Sumiya, M. Saito, H. He, Q. Feng, N. Takezawa, Catal. Lett. 50 (1998) 87.
- [6] A. Abe, N. Aoyama, S. Sumiya, N. Kakuta, K. Yoshida, Catal. Lett. 51 (1998) 5.
- [7] S. Satokawa, Chem. Lett. (2000) 294.
- [8] J. Shibata, K. Shimizu, S. Satokawa, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 5 (2003) 2154.
- [9] U. Bentrup, M. Richter, R. Fricke, Appl. Catal. B 55 (2005) 213.
- [10] P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dědeček, K. Arve, B. Wichterlová, J. Catal. 232 (2005) 302.
- [11] Y. Yu, H. He, Q. Feng, H. Gao, X. Yang, Appl. Catal. B 49 (2004) 159.
- [12] Y. Yu, H. He, Q. Feng, J. Phys. Chem. B 107 (2003) 13090.
- [13] F.C. Meunier, V. Zuzaniuk, J.P. Breen, M. Olsson, J.R.H. Ross, Catal. Today 59 (2000) 287.
- [14] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal. B 30 (2001) 151.
- [15] S. Sumiya, H. He, A. Abe, N. Takezawa, K. Yoshida, J. Chem. Soc. Faraday Trans. 94 (1998) 2217.
- [16] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, R.J. Willey, J. Catal. 157 (1995) 523.
- [17] N. Macleod, R.M. Lambert, Appl. Catal. B 46 (2003) 483.
- [18] K. Sato, T. Yoshinari, Y. Kintaichi, M. Haneda, H. Hamada, Appl. Catal. B 44 (2003) 67.
- [19] M. Richter, R. Fricke, R. Eckelt, Catal. Lett. 94 (2004) 115.