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A B S T R A C T

Highly dispersed precious metals are critical to many important catalytic reactions and strongly affect the ac-
tivity of catalysts. In this work, a simple method to stabilize noble metals on Pd/TiO2 catalyst by constructing
Ti3+ defects on the surface of TiO2 supports. The TiO2 samples with different contents of Ti3+ defects were used
to prepare a series of Pd/TiO2 catalysts, which were tested in formaldehyde (HCHO) oxidation. Multiple char-
acterization results illustrated that the Ti3+ defects on TiO2 produced by hydrogen pretreatment during high
temperature reduction (HTR), favored the stabilization of Pd particles through the strong metal-support inter-
action (SMSI). The increasing Pd dispersion induced more oxygen vacancies on the surfaces of Pd/TiO2 catalysts,
because of hydrogen spillover, and further increased the electron density of Pd species. The activation of water
and oxygen was also promoted to form more surface oxygen species. Therefore, the more surface defects ex-
isting, the better performance of Pd/TiO2 catalysts displayed for HCHO oxidation.

1. Introduction

HCHO is one of the main indoor pollutants and is emitted from a
wide range of sources, such as building/furnishing materials and dec-
orative products [1,2]. Long-time exposure to HCHO, even at low
concentrations, may induce health problems such as nasal tumors,
headache, eye irritation, respiratory tract diseases or even cancer [3].
Catalytic oxidation is widely recognized as a promising method for
HCHO removal because of its high effectiveness in catalyzing HCHO
oxidation, which can convert HCHO into harmless CO2 and H2O
without any secondary pollution [4,5]. Compared to metal oxide cat-
alysts (Ce, Mn, Co, Ni) where higher reaction temperature is needed
[6–13], noble metal (Pt, Au, Pd, Ir, Rh) catalysts are considered to be
more suitable for indoor HCHO elimination due to their excellent per-
formance in HCHO oxidation at room temperature [11,14–17]. How-
ever, the high cost of noble metal catalysts has limited their wide

application. Therefore, it is necessary to further improve their perfor-
mance for HCHO oxidation or cut down the application cost.

Surface defects, generally thought to have a profound influence on
the chemical properties of metal oxide, play important roles in the
burgeoning range of applications involving geochemistry, gas sensors,
microelectronics and especially catalytic fields [18]. Especially in the
field of heterogeneous catalysis, surface defects were crucial in catalysts
or catalytic supports. Some reports recorded that defects of metal
oxides, metal sulfides, metal nitrides, and metal-organic frameworks
(MOFs) were applied to anchor the single atomic metal sites through
surface disorder, dislocation, heterogeneity, and vacancy, due to the
SMSI [19–21]. Oxygen vacancy is a dominant type of defects in many
metal oxides and had been widely investigated by theoretical calcula-
tions and experimental characterization [22–25]. It has been found that
oxygen vacancies play important roles as active sites for heterogeneous
catalysis, which strongly affect the activity of the catalysts [24]. It is
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worth noting that oxygen vacancies on TiO2 are important active sites
for water dissociation to form surface hydroxyl groups [26,27], which
are essential for some reactions, such as CO oxidation [28,29], water
gas shift (WGS) [30] and HCHO catalytic oxidation [31–36]. For HCHO
oxidation, oxygen vacancy involved in many research works was just
one of the factors that affected the performance of catalysts, especially
in the supported catalysts [31–35,37,38]. Therefore, the investigation
about influence of surface defects on the supported catalysts was not
comprehensive. The influence mechanism of defects on catalyst struc-
ture, especially on the noble metals was still not got attention in HCHO
oxidation studies. In our previous work, we found an interesting phe-
nomenon that high temperature reduction did not lead in agglomera-
tion of Pd particles but did promote the Pd dispersion. We attributed
the phenomenon to TiO2-x, which diffused to the surface of Pd particles
and then embedded them [33]. Based on this discovery, we put forward
another interesting assumption that the surface defects of carries pro-
duced by high temperature treatment, may play a key role in trapping
the Pd particles, which is worth exploring.

As we know, surface defects can be formed by high-temperature
heating under ultra-high vacuum or a reducing atmosphere, high-en-
ergy particle bombardment and ion or γ-ray sputtering, etc. [25,39–43].
Among these methods, high-temperature reduction is a simple and ef-
fective way to produce surface defects (Ti3+ species and oxygen va-
cancies) on TiO2 according to the Kröger-Vink equation [25,44]:

O* O + 2Ti4* Ti + H2 →V++
O + 2Ti3* Ti + H2O

(where O* O is an O2− ion in the oxygen lattice site, V++
O is an oxygen

vacancy with double positive charge, Ti4*Ti is a Ti4+ ion in the titanium
lattice site, and Ti3* Ti is a Ti3+ ion in the titanium lattice site.)

In this study, to obtain different amount of defects on the carriers,
TiO2 was firstly pretreated with H2 at different temperatures (200, 400
and 600 °C). Then, a series of Pd/TiO2 catalysts were prepared using the
pretreated TiO2 samples as carriers. It was found that pretreatment at
higher temperature contributed to better performance in HCHO oxi-
dation. Complete conversion of 150 ppm HCHO at a WHSV of
300,000mL/(g h) could be achieved on the Pd/TiO2-600 catalyst at
room temperature. The catalysts were then characterized by CO che-
misorption, high-angle annular dark-field scanning transmission elec-
tron microscopy (HAADF-STEM), temperature programmed reduction
by H2 (H2-TPR), electron spin resonance (ESR), temperature-pro-
grammed desorption by CO2 (CO2-TPD), Fourier transform infrared
(FTIR), X-ray photoelectron spectroscopy (XPS) and in situ Diffuse
Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS).
Based on the characterization results, the effects of surface defects were
discussed and elucidated.

2. Experiment section

2.1. Catalyst preparation

A series of 1 wt. % Pd/TiO2 catalysts were prepared by impregna-
tion of TiO2 (Alfa Aesar) with aqueous Pd(NO3)2 (Sigma Aldrich), ac-
cording to our previous study [15]. In this study, however, TiO2 was
pretreated with a gas mixture of 10 vol. % H2/N2 at different tem-
peratures (200, 400 and 600 °C) and marked as TiO2-200, TiO2-400 and
TiO2-600, respectively. Before activity testing and characterization, the
samples were reduced with H2 at 350 °C for 1 h. After that the catalysts
were labeled as Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600,
respectively.

2.2. Catalyst characterization

X-ray diffraction (XRD), N2 adsorption-desorption, CO pulse che-
misorption, H2-TPR, XPS, HAADF-STEM analysis and FTIR spectra were
carried out according to our previous work [33]. In situ DRIFT spectra

were recorded on a Thermo Fisher IS50 FTIR spectrometer, equipped
with an in situ diffuse reflectance chamber (Harrick) and high sensi-
tivity MCT/A detector. Before recording each DRIFT spectrum, the
sample was reduced in situ in H2 flow at 623 K for 1 h, then purged with
He flow for 30min, followed by cooling down to 25 °C. All spectra were
measured with a resolution of 4 cm−1 and an accumulation of 100
scans.

ESR spectra were collected on a Benchtop Micro-ESRTM machine
(Active Spectrum, Inc.). The ESR spectra were performed at a micro-
wave frequency of 9.70 GHz at 120 K without light irradiation. The
scanning speed was 30 s per sweep, and the spectra were averaged
based on 30 sweeps. The UV–vis absorption spectra were measured by a
Shimadzu UV-3600 UV–vis spectrophotometer.

CO2-TPD was performed on a Micromeritics AutoChem II 2920
apparatus. Firstly, the catalysts were reduced in situ with 10 vol. % H2/
Ar flow at 623 K for 1 h, then cooled down to 80 °C by purging with Ar.
After that the system was switched to 5 vol. % O2/He for 1 h, then
purged with Ar for 40min, followed by cooling down to -10 °C. Then
the system was switched to 5 vol. % CO/He for 30min, followed by
purging with Ar for another 20min. Finally, CO2-TPD was conducted in
He from -10 to 800 °C at a rate of 10 °C/min. The product (CO2) was
monitored using a mass spectrometer.

2.3. Activity test for HCHO oxidation

The activity tests for the catalytic oxidation of HCHO on the cata-
lysts (20mg) were performed in a fixed-bed quartz flow reactor (d
=4mm) in an incubator kept at 25 °C. Gaseous HCHO was generated
by flowing He through a para-formaldehyde container. Water vapor
was generated by flowing He through a water bubbler. The feed gas
composition was 150 ppm of HCHO, 20 % O2, 35 % RH and He balance.
The total flow rate was 100mL/min, corresponding to a WHSV of
300,000mL/(g h. The inlet and outlet gases were monitored according
to our previous work [32]. In all the experiments, HCHO conversion
was calculated using the following equation:

= ×HCHO Conversion HCHO
HCHO

(%) 1 [ ]
[ ]

100%out

in

The CO2 yield was defined as follows:

= ×CO Yield CO
HCHO

(%) [ ]
[ ]

100%
in

2
2

where [HCHO]in and [HCHO]out are the inlet and outlet HCHO con-
centrations, [CO2] is the outlet CO2 concentration, respectively.

Turnover frequency (TOF, s−1) was calculated at 25℃ based on a
separate experiment where the apparent conversion of HCHO was kept
below 20 % by varying the inlet HCHO concentration and WHSV, with
negligible heat and mass-transfer effects and TOF was calculated ac-
cording to the following equation [33]:

= =
× ×

× ×
TOF n

n
[HCHO] V/R
m D /M

HCHO
'

Pd
'

in g

cat. Pd Pd Pd

Where the parameters are the molar weight of consumed HCHO per
second (n′HCHO, mol s−1), molar weight of Pd exposed on TiO2 surface
(n′Pd, mol), initial inlet concentration of HCHO ([HCHO]in, ppm), total
flow rate (V, L s−1), molar volume of gas at 25 °C and 101 kPa (Rg,
24.5 L mol−1), weight of catalyst (mcat., g), loading percentage of Pd
(ωPd, %), Pd dispersion (DPd, %) and molecular mass of Pd (MPd, g
mol−1), respectively.

3. Results and discussion

3.1. Structure of catalysts

The specific surface areas were determined by N2 adsorption-
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desorption analysis and the results are exhibited in Table 1. After pre-
treatment at high temperature, the surface area slightly decreased from
59.7m2/g to 50.6m2/g due to TiO2 pores collapsing during reduction.
The XRD patterns of reduced Pd/TiO2 catalysts and TiO2 supports are
shown in Fig. S1. The results displayed there was no change in the
crystal structures of all the carriers and catalysts, indicating that the
reduction temperature had little influence on their crystal structures
and that Pd was well dispersed.

3.2. Defects analysis

In order to measure the defects on the pretreated TiO2 carriers, ESR
and diffuse reflectance UV–vis-NIR spectra were measured and the re-
sults are displayed in Fig. 1. The ESR signals of the TiO2 supports are
displayed in Fig. 1a. All of the samples showed a signal at g= 1.977,
which is ascribed to Ti3+ [45]. Notably, the signal of Ti3+ became
stronger in the order of TiO2, TiO2-200, TiO2-400 and TiO2-600, which
implied that reduction treatment could induce surface defects on the
TiO2 nanocrystals, that is, the higher reduction temperature, the more
surface defects. As shown in Fig. 1b, the results of diffuse reflectance
UV–vis-NIR spectroscopy further verified the above conclusions. After
treatment with H2 at 200, 400, and 600 °C, TiO2 samples exhibited an
absorption located in the visible and NIR region, which was due to the
transitions of electrons in shallow traps or the conduction band [46].
The absorption intensity gradually increased as the treatment tem-
perature rose, which indicated that defects were enhanced with in-
creasing reduction temperature. After Pd loading (Fig. 2a), besides Ti3+

species, a new species at g= 2.004 appeared on the four Pd/TiO2

catalysts, which is assigned to oxygen vacancies [47]. In addition, the
amount of oxygen vacancies was increasing in the order of Pd/
TiO2< Pd/TiO2-200<Pd/TiO2-400<Pd/TiO2-600 catalyst, which
was in line with the result of diffuse reflectance UV–vis-NIR spectro-
scopy of the four catalysts. As shown in Fig. 2b, the photo-absorption
edges caused by interband transition occurred at approximately 410 nm

on the four catalysts, which is characteristic of doped TiO2 with mid-
gap impurity states. The absorption intensity gradually increased in the
order of Pd/TiO2<Pd/TiO2-200<Pd/TiO2-400<Pd/TiO2-600 cata-
lysts, implied the doping degree of catalyst is improved. Compared to
the diffuse reflectance UV–vis-NIR spectroscopy of supports, the photo-
absorption intensities were all enhanced, which indicated that after
loading Pd species there were more defects formed. The reason why the
amount of oxygen vacancies increasing with the carriers pretreatment
temperature rising will be further elucidated.

3.3. Pd dispersion and particle size analysis

CO pulse chemisorption was carried out to determine the Pd dis-
persion (dco) and the results are listed in Table 1. Pd dispersion on the
Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 catalysts was
13.9 %, 14.3 %, 18.0 %, and 21.3 %, respectively. To verify the above
phenomenon, Pd particle size distributions were further measured using
HAADF/STEM, and the results are shown in Fig. 3 and Table 1. The
mean Pd particle size was 3.32, 3.04, 2.17 and 1.74 nm on Pd/TiO2, Pd/
TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 catalysts, respectively, which
was in accordance with the Pd dispersion results. The elemental map-
ping diagram displayed the spatial distribution of TiO2 and Pd nano-
particles, which implied that Pd distributed uniformly and further
confirmed the dispersion of Pd particles on the four catalysts gradually
increased (shown in Fig. S2). The above results implied that HTR
treatment of the carriers was beneficial to Pd dispersion even in the case
of a decrease in surface specific area. It was reported that surface de-
fects on carriers, such as metal sulfides, metal oxides and metal-organic
frameworks, play an important role in anchoring the supported metal
ions to prepare single-atom catalysts [19,21,48,49]. The DFT calcula-
tions also confirmed that the interaction between the Pd atom and the
oxygen-vacant TiO2(101) surface is remarkably stronger than that be-
tween the Pd atom and the intrinsic TiO2(101) surface with respect to
the adsorption energy [50]. Combining with the result of Fig.1, it is
reasonable to attribute the enhancement of Pd dispersion to the more
surface defects formed on TiO2. It is noteworthy that better Pd dis-
persion means more active sites for hydrogen spillover in the process of
reduction. Therefore, the phenomenon that the amount of oxygen va-
cancies increasing in the order of Pd/TiO2< Pd/TiO2-200<Pd/TiO2-
400<Pd/TiO2-600 catalyst (observed in Fig. 2) could be attributed to
the enhanced Pd dispersion. Meanwhile, a SMSI between Pd particles
and TiO2 was also formed.

The Pd dispersion based on DTEM was also calculated and labeled as
dTEM and the value is shown in Table 1. Theoretically, the value of dco
approaches that of dTEM. According to a previous work [14], the ex-
istence of a SMSI could induce suppression of the adsorption of small
molecules such as CO and H2 [51–53]. In this work, for all the Pd/TiO2

catalysts, the values of dco were smaller than dTEM, which confirmed the
existence of a SMSI on the Pd/TiO2 catalysts. Meanwhile, as the TiO2

Table 1
Specific Surface Area (SBET), Pd Dispersion (d), difference value between dTEM
and dco, Pd nanoparticles size (D) and turnover frequencies (TOF) of Pd/TiO2,
Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 catalysts.

Samples SBET
(m2/g)

dCOa

(%)
dTEMb

(%)
dTEM-dco
(%)

DTEM
c

(nm)
TOF×10−3 d

(s−1)

Pd/TiO2 59.7 13.9 20.8 6.9 3.32 3.59
Pd/TiO2-200 57.4 14.3 22.7 8.4 3.04 7.06
Pd/TiO2-400 57.8 18.0 31.8 13.8 2.17 10.31
Pd/TiO2-600 50.6 21.3 39.6 18.3 1.74 30.84

a Pd dispersion measured with CO pulse chemisorption.
b Pd dispersion calculated based on DTEM.
c Pd particle size measured with TEM.
d Turnover frequencies (TOF) calculated from dTEM.

Fig. 1. ESR (a) and diffuse reflectance UV–vis-NIR spectra (b) of TiO2, TiO2-200, TiO2-400 and TiO2-600 carriers.
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reduction temperature increase, the difference between dTEM and dco
grew larger; that is, the strength of the SMSI was enhanced. The phe-
nomenon was also can be seen on the HRTEM pictures (shown in Fig.
S3), and some encapsulated Pd nanoparticles were observed (marked
by red circles). Obviously, with the increase of pretreatment tempera-
ture of catalysts, the number of coated particles increased gradually,
which indicated the SMSI between Pd and TiO2 was become stronger.

3.4. XPS analysis

To demonstrate the electronic states of Pd and O elements on the
catalyst surface, XPS measurements of Pd 3d and O 1s were carried out

next and the results are shown in Fig. 4. As shown in Fig. 4a, three kinds
of Pd species were observed on all of the Pd/TiO2-X catalysts. The peak
in the range of 336.4–336.7 eV was assigned to Pd2+ species, which
may be attributed to the re-oxidation of metal Pd particles by O2 and/or
H2O in air during transfer of the sample to the XPS chamber [45]. The
peaks in the range of 334.1–335.4 eV should be attributed to Pd° spe-
cies. Different from the Pd species at 335.0–335.4 eV, the ones at
334.1–334.4 eV possessed more electrons, and should be ascribed to Pd°
species interacting with oxygen vacancies, represented by Pd°-Vo. The
negatively charged Pd° species resulted from electron transfer from the
oxygen vacancies to Pd° groups through the SMSI between Pd particles
and TiO2 [15,54] and the DFT result proved that the Hirshfeld charge of

Fig. 2. ESR (a) and diffuse reflectance UV–vis-NIR spectra (b) of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 samples.

Fig. 3. HAADF/STEM images and particle size distribution of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 samples.
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Pd atom was lower and closer to the metallic state over TiO2-x support
with oxygen vacancies than that over intrinsic TiO2 support [55]. It was
reported that negatively charged noble metal nanoparticles could en-
hance O2 adsorption and activation, because the electron donation from
the metal to the antibonding π* orbital of O2 was enhanced [38]. The
relative contents of Pd°-Vo species were calculated, and they were 33.5
%, 43.2 %, 52.4 % and 56.3 % on Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400
and Pd/TiO2-600, respectively. As can be seen, higher reduction tem-
perature was associated with the production of more Pd°-Vo species, in
line with the HCHO oxidation activity.

Fig. 4b displays the O 1s XPS spectra of the catalysts. All samples
exhibited peaks of two kinds of O species. The main peak in the range of
529.4–529.6 eV was ascribed to the lattice oxygen of bulk TiO2 (Oβ)
[56]. The shoulder peak in the range of 531.2–531.4 eV may be as-
signed to chemisorbed oxygen (Oα) [32,57]. The ratio of Oα/Oα+Oβ

slightly increased with the increase of the carrier pretreatment tem-
perature, and Pd/TiO2-600 possessed the most chemisorbed oxygen
species. The results indicated the presence of a large amount of surface
oxygen species on Pd/TiO2-600 catalyst, consistent with its excellent
ability to activate water and oxygen. The result was also confirmed by
CO2-TPD (as shown in Fig. 5). Clearly, the peak area of desorbed CO2

gradually increased in the order of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400
and Pd/TiO2-600. The phenomenon indicated that active oxygen was
indeed enhanced on the catalysts after the carriers were pretreated by
HTR and that this active oxygen could oxidize CO to CO2 [58].

3.5. Water activation capacity test

It is worth noting that oxygen vacancies are important active sites
for water dissociation to form surface hydroxyl groups [42]. FTIR
measurements were carried out to further investigate the surface hy-
droxyl groups, and the results are shown in Fig. 6. All four samples
displayed two peaks at 1629 cm−1 and 3424 cm−1, which are assigned
to the bending and stretching vibrations of surface OH, respectively
[59,60]. It was apparent that the amount of surface OH species followed
the order Pd/TiO2< Pd/TiO2-200<Pd/TiO2-400<Pd/TiO2-600,
which was in line with the O 1s XPS results. This result indicated that
treatment of the carrier with HTR could enhance the ability of Pd/TiO2

catalysts to activate water molecules to form surface OH groups. As
mentioned above, with increasing TiO2 pretreatment temperature,
more oxygen vacancies appeared on the Pd/TiO2 catalysts. As is well
known, oxygen vacancies play an important role in water dissociation
to form surface active OH groups [14,61–63].

3.6. Reducibility of catalysts

The effect of pretreatment of the supports on the reducibility of the
catalysts was investigated by H2-TPR measurements, and the results are
shown in Fig. 7. The catalysts exhibited two peaks in the temperature
range of -50−100 °C. The negative peak at around 75 °C is associated
with hydrogen desorption from PdH4 [64]. The main hydrogen con-
sumption peaks of the Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/
TiO2-600 catalysts were below zero °C at -6.9, -8.4, -9.0 and -10.4 °C

Fig. 4. XPS spectra of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600 samples, (a) Pd 3d (inset: Distribution ratio of Pd°-VO/Pd); (b) O 1s (inset: Distribution
ratio of Oα/(Oα+Oβ)).

Fig. 5. CO2-TPD of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600
samples. Reaction conditions: the catalysts were reduced in situ with H2/Ar
flow at 623 K for 1 h, then the catalyst preabsorbs O2/He for 1 h, followed by
purging with Ar and cooling down to -10 °C. After that, the catalyst preabsorbs
5 vol. % CO/He for 30min. Finally, the system programmed temperature des-
orption and CO2 was tested by MS detector.

Fig. 6. The hydroxyl groups test by FTIR of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-
400 and Pd/TiO2-600 samples. Reaction condition: 1mg samples was mixed
with 150mg KBr followed drying under a heat lamp, then the mixture was
pressed into a transparent pellet die before FTIR tests.
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respectively, which were assigned to the reduction of Pd2+ species
[65]. With increasing pretreatment temperature for the supports, the
hydrogen consumption peaks gradually shifted to lower temperatures,
which suggested that the reducibility of catalysts was enhanced.

3.7. Activity in HCHO oxidation

The performance of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/
TiO2-600 in HCHO oxidation was evaluated and the results are shown
in Fig. 8. For the catalysts, HCHO conversion was 2%, 15 %, 23 % and
100 % at 25 °C, respectively. With reaction temperature increasing, the
HCHO conversion ratio of Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 cata-
lysts increased and reached 80 %, 96 % and 100 % at 135 °C, respec-
tively. Meanwhile, from Fig. S4, there were no other by-products be-
sides CO2. It was clear that the catalytic activity of HCHO oxidation
improved with increasing carrier pretreatment temperature. Moreover,
as shown in Fig. S5, the Pd/TiO2-600 catalyst displayed an excellent
stability, maintaining 100 % conversion at a high WHSV (300,000mL/
g h for 20 h.

Based on the results of Pd dispersion (dco), TOFs over the four
catalysts were calculated at 25 °C and the results are summarized in
Table 1. The Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/TiO2-600
catalysts presented TOFs of 3.59× 10−3, 7.06×10−3, 10.31× 10−3

and 30.84× 10−3 s-1, respectively. It is clear that the HTR treatment of
the supports significantly enhanced the intrinsic catalytic activity of the
Pd/TiO2 catalysts.

3.8. Reaction pathways of HCHO oxidation

The reaction mechanisms of HCHO oxidation on the Pd/TiO2 cata-
lysts at room temperature were investigated with in situ DRIFTS. The
spectra of the Pd/TiO2-600 catalyst at steady state under different gas
flows are shown in Fig. 9. Firstly, the Pd/TiO2-600 catalyst was exposed
to a flow of HCHO + He for 60min. With the consumption of surface
hydroxyl species (3677 cm−1 for ʋ (OH)) [14], other species, including
dioxymethylene (DOM) species (1061−1179 cm-1) and formate species
(1357, 1555 cm-1 for ʋ(COO) and 2758, 2863 and 2915 cm−1 for ʋ
(C–H)), appeared due to partial oxidation of adsorbed HCHO by re-
sidual surface OH groups [10,14,33,66–69]. After HCHO adsorption
saturation, the system was purged by He for 60min. The bands of DOM
species decreased slightly, meanwhile the bands of formate species in-
creased, which was due to the decomposition of DOM by the active
hydroxyl groups. However, there were not enough oxygen species to
entirely oxidize the DOM species. When water and oxygen were in-
troduced into the system, the DOM species almost entirely disappeared,
while the formate groups did not significantly increase and the CO2

species (2350 cm-1) simultaneously appeared. The phenomenon further
implied that surface active oxygen groups played an important role not
only in DOM conversion but also in the formate decomposition process.
Based on the results shown in Fig. S6, HCHO oxidation on the Pd/TiO2

catalysts followed the same reaction pathway, and formate oxidation
was the rate-controlling step. Thus, the pre-reduction of the carriers
may have no impact on the HCHO oxidation pathway on the Pd/TiO2

catalysts.

4. Conclusions

A series of Pd/TiO2 catalysts were prepared with different amounts
of Ti3+ defects on carriers treated by HTR. It is clear that TiO2 surface
defects formed by HTR played important roles in HCHO oxidation. On
the one hand, Pd ions could be trapped by surface defects and Pd dis-
persion will be improved. The catalysts with a better Pd dispersion
possess more active sites for HCHO oxidation and hydrogen spillover.
So there were more oxygen vacancies formed on the catalysts surfaces.
Meanwhile, the presence of more Pd-Vo species increased the electron
density around Pd species and enhanced the activation of chemisorbed
oxygen, which is beneficial to HCHO catalytic oxidation. On the other
hand, as we know, the more oxygen vacancies exist on the catalysts, the
more OH groups can be produced. Therefore, with increasing pre-re-
duction temperature of TiO2, the performance of Pd/TiO2 catalysts for

Fig. 7. H2-TPR of the unreduced Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/
TiO2-600 catalysts.

Fig. 8. HCHO conversion over Pd/TiO2, Pd/TiO2-200, Pd/TiO2-400 and Pd/
TiO2-600 samples. Reaction conditions: 150 ppm of HCHO, 20 % O2, 35 % RH,
He balance, WHSV 300,000mL/(g·h).

Fig. 9. In situ DRIFTS spectra over Pd/TiO2-600 in a flow of HCHO for 60min
(1); followed by He purging for 60min (2); and by O2 + H2O + He purging for
60min (3) at room temperature. Reaction conditions: 230 ppm of HCHO, 20 %
O2, 35 % RH, He balance, total flow rate of 100mL / min.
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HCHO oxidation improved. The Pd/TiO2-600 catalyst could completely
convert HCHO into CO2 and H2O at 25 °C with a WHSV of 300,000mL/
(g h.
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