

Contents lists available at ScienceDirect

# Applied Catalysis B: Environmental



journal homepage: www.elsevier.com/locate/apcatb

# Unexpected increase in low-temperature NH<sub>3</sub>-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging

Jinpeng Du<sup>a,b</sup>, Yulong Shan<sup>a,\*</sup>, Yu Sun<sup>a,b</sup>, Meng Gao<sup>a,b</sup>, Zhongqi Liu<sup>a,b</sup>, Xiaoyan Shi<sup>a,b</sup>, Yunbo Yu<sup>a,b</sup>, Hong He<sup>a,b,c,\*</sup>

<sup>a</sup> State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing, 100049, China

<sup>c</sup> Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China

ARTICLE INFO

Keywords: NO<sub>x</sub> reduction NH<sub>3</sub>-SCR Cu-SSZ-39 Hydrothermal aging  $Cu_xO_y$  species

# ABSTRACT

The control of nitrogen oxides (NO<sub>x</sub>) from heavy-duty diesel vehicles is becoming increasingly urgent due to its detrimental effects on the environment. Cu-SSZ-39, with its exceptional NH<sub>3</sub>-SCR activity and hydrothermal stability, has attracted more and more attention in the field of diesel vehicle emission control. In this work, an unexpected phenomenon was observed for Cu-SSZ-39 after hydrothermal aging. Generally, the hydrothermal aging process causes deterioration of the catalytic performance of catalysts. However, a remarkable increase in low-temperature NH<sub>3</sub>-SCR catalytic activity was observed in Cu-SSZ-39 after it was exposed to 850 °C hydrothermal aging conditions for 16 h. EPR, DRIFTS, H<sub>2</sub>-TPR, UV–vis and XANES were utilized to detect the changes in Cu species. It was determined that a portion of the Cu<sup>2+</sup> ions near double six-membered rings (d6r) transformed into Cu<sub>x</sub>O<sub>y</sub> species after hydrothermal treatment. These Cu<sub>x</sub>O<sub>y</sub> species facilitated the production of nitrate species which were critical intermediates in the NH<sub>3</sub>-SCR process, resulting in an increase in low-temperature catalytic.

## 1. Introduction

Nitrogen oxide (NO<sub>x</sub>) emissions from heavy-duty diesel vehicles contribute extensively to air pollution problems. Selective catalytic reduction of NH<sub>3</sub> (NH<sub>3</sub>-SCR) has been considered the dominant technology for NO<sub>x</sub> control in diesel vehicles [1]. Apart from the abatement of NO<sub>x</sub>, the elimination of particulate matter (PM) is also crucial. A diesel particulate filter (DPF) is used for the removal of PM; however, high-temperature regeneration is frequently needed for the combustion of PM. Therefore, SCR catalysts are often exposed to high temperature and humid conditions, resulting in a requirement of high hydrothermal stability for SCR catalysts [2]. Cu-SSZ-39, a newly studied zeolite developed in the past 10 years, is known for its excellent hydrothermal stability [3]. Meanwhile, it also possesses good NH<sub>3</sub>-SCR activity, N<sub>2</sub> selectivity and sulfur tolerance [4,5]. As a result, it is becoming one of the most promising commercial catalysts in NO<sub>x</sub> control systems of heavy-duty diesel vehicles.

In general, the high-temperature hydrothermal aging process always

induces a decline in NH<sub>3</sub>-SCR activity [6,7]. Hydrothermal treatment can cause the loss of active Cu ions, resulting in a decrease in catalytic activity. In the meantime, the accumulated  $Cu_xO_y$  species would also cause a decline in NO<sub>x</sub> conversion at high temperatures due to nonselective oxidation of NH<sub>3</sub> [8,9]. Meanwhile, collapse of the skeleton also leads to the loss of Brønsted acid sites, which act as a NH<sub>3</sub> reservoir as well as active centers in some specific circumstances [10,11]. Furthermore, the aggregation of copper ions and the collapse of the framework feed off each other [7,12]. Nam et al. found that the motion of  $Cu_xO_y$ clusters inside zeolite pore channels accelerated the deterioration of the framework [7]. At the same time, Cu ions are more likely to accumulate into  $Cu_xO_y$  clusters due to a deficiency in ion-exchanged sites [9,13]. As a result, the loss of active Cu ions and Brønsted acid sites together with the formation of  $Cu_xO_y$  species cause a decrease in catalytic activity in many small pore zeolites.

However, there has been an abnormal phenomenon occurring in some specific small pore zeolites after high-temperature hydrothermal treatment. It was observed by many researchers that catalytic activity

https://doi.org/10.1016/j.apcatb.2021.120237

Received 12 January 2021; Received in revised form 21 March 2021; Accepted 15 April 2021 Available online 19 April 2021 0926-3373/© 2021 Elsevier B.V. All rights reserved.

<sup>\*</sup> Corresponding authors at: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

E-mail addresses: ylshan@rcees.ac.cn (Y. Shan), honghe@rcees.ac.cn (H. He).

was improved in Cu-SAPO-34 after high-temperature hydrothermal aging [14,15]. After a comparison of Cu species in the fresh and aged Cu-SAPO-34, the transformation of  $Cu_xO_y$  species into active  $Cu^{2+}$  was thought to be the cause of this phenomenon [15,16]. Hong et al. found that the catalytic performance of aged LTA zeolites was better than that of fresh ones. With investigation of the precise position of Cu ions, it was found that Cu ions migrated from inert sites to active sites during the hydrothermal aging process [17,18]. Furthermore, an increase in NO conversion was also observed by Sonoda et al. in P-modified Cu-SSZ-39 after hydrothermal aging at 900 °C; however, they did not pay much attention to the phenomenon [19].

In this study, we also observed an increase in the low-temperature catalytic activity of Cu-SSZ-39 after hydrothermal aging. EPR, DRIFTS, H<sub>2</sub>-TPR, UV–vis and XANES were carried out to examine the changes in Cu species. As a result, it was inferred that the formation of  $Cu_xO_y$  species was the cause of the increased low-temperature catalytic activity. Moreover, we proved that  $Cu_xO_y$  species were SCR-active in Cu-SSZ-39, and the reaction process was investigated with the help of *in situ* DRIFTS. The results of this study not only contributed to knowledge on Cu-SSZ-39 catalysts, but also brought us better understanding of the function of  $Cu_xO_y$  species in NH<sub>3</sub>-SCR.

# 2. Experimental

# 2.1. Catalyst preparation

The Cu-SSZ-39 catalysts were prepared by a hydrothermal method using N, N-dimethyl-3, 5-dimethylpiperidinium as structure directing agent (SDA). The initial ratio of materials was as follows: 3 g Y zeolite: 4.5 g SDA (25 wt. %): 25.5 g H<sub>2</sub>O: 0.75 g NaOH, and the following procedure was the same as described in the literature [4]. The elemental composition was detected by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Cu-SSZ-39 catalysts with Si/Al ratio of 6.8, and Cu loading of 0.5 %, 1.3 %, 1.8 %, 2.0 % and 2.3 % (Cu/Al: 0.05, 0.13, 0.17, 0.2, 0.23) were obtained by ion-exchange of  $\rm NH_4\text{-}SSZ\text{-}39$  with 0.001 M, 0.005 M, 0.01 M, 0.05 M and 0.2 M Cu (NO<sub>3</sub>)<sub>2</sub>, respectively. The Cu-SSZ-39 catalysts with different Cu loading were denoted as Cu<sub>0.5</sub>-SSZ-39-fresh, Cu<sub>1.3</sub>-SSZ-39-fresh, Cu<sub>1.8</sub>-SSZ-39-fresh, Cu<sub>2.0</sub>-SSZ-39-fresh and Cu<sub>2.3</sub>-SSZ-39-fresh. 200 mg of the fresh catalysts were placed in quartz tubes with quartz wool blocking both ends, so that gas can pass through the catalysts. The catalysts were hydrothermally treated in 10 % H<sub>2</sub>O/air at 850 °C for 16 h (ramp rate: 10  $^{\circ}$ C/min), with a total gas flow of 200 mL/min, and then cooled naturally to room temperature after aging. The aged catalysts were denoted as Cu<sub>1.3</sub>-SSZ-39-HTA, Cu<sub>1.8</sub>-SSZ-39-HTA, Cu<sub>0.5</sub>-SSZ-39-HTA, Cu<sub>2.0</sub>-SSZ-39-HTA and Cu<sub>2.3</sub>-SSZ-39-HTA, respectively. Furthermore, to prepare catalysts with various CuxOy contents, we treated Cu<sub>1.8</sub>-SSZ-39-fresh at various temperatures. The aging conditions were the same as those for the hydrothermal aging process at 850 °C; however, the temperatures were set at 650 °C, 675 °C, 700 °C, and 750 °C, and the aging time was set at 2 h. In the meantime, we tried to dissolve some of the Cu<sub>x</sub>O<sub>y</sub> species in Cu<sub>1.8</sub>-SSZ-39-HTA to further confirm the function of the Cu<sub>x</sub>O<sub>y</sub> species. 500 mg Cu<sub>1.8</sub>-SSZ-39-HTA catalyst was dissolved into 50 ml HNO<sub>3</sub> with a concentration of 0.01 M. After stirring for 5 h at 40 °C, the solution was dried by rotary evaporation. The obtained powder was dried at 100 °C overnight for further characterization.

#### 2.2. Catalyst characterization

ICP-OES with a PerkinElmer OPTIMA 8300 spectrometer was used to detect the concentration of elements in the catalysts. X-Ray diffraction (XRD) was carried out on a Bruker D8 ADVANCE diffractometer with Cu K $\alpha$  radiation ( $\lambda$  =0.15406 nm). Magnetic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra were utilized to detect the coordination environment of framework atoms. <sup>27</sup>Al NMR and <sup>29</sup>Si NMR

signals were detected by a 3.2 mm CP MAS probe with relaxation times of 5 s and 8 s, respectively, and the mass frequency was 12 kHz.

Electron paramagnetic resonance (EPR) was used to detect Cu ions, and the experiment was carried out on a Bruker E500 X-band spectrometer at -120 °C. In situ DRIFTS of NH3 adsorption was carried out to distinguish Cu ions, and the experiments were carried out on a Thermo Nicolet IS50 with MCT/A detector. The catalysts were pretreated at 500 °C under 20 % O<sub>2</sub>/N<sub>2</sub> for 30 min, and after the temperature was reduced to 200 °C, 500 ppm NH<sub>3</sub>/N<sub>2</sub> was introduced. The redox properties of the catalysts were tested by temperature programmed reduction of H<sub>2</sub> (H<sub>2</sub>-TPR) experiments on a Micromeritics AutoChem 2920 chemisorption analyzer. The catalysts were pretreated at 500 °C under  $20 \% O_2/N_2$  for 1 h, and the reduction process was carried out under 10 %H<sub>2</sub>/Ar from 50 °C to 800 °C at a ramp rate of 10 °C/min. Ultraviolet visible diffuse reflectance spectroscopy (UV-vis-DRS) was carried out on a Varian Cary 5000 spectrometer at room temperature with scanning range from 20,000 cm<sup>-1</sup> to 50,000 cm<sup>-1</sup>. X-ray absorption near edge structure (XANES) spectra were used to detect the coordination environment of Cu, and the experiment was carried out in the 1W1B beamline of Beijing Synchrotron Radiation Facility. Transmission electron microscopy (TEM) was employed to observe the formation of  $Cu_rO_v$ clusters after hydrothermal aging, using a Double Aberration-Corrected TEM (Titan Cubed Themis G2 300).

In situ DRIFTS was used to investigate the NH<sub>3</sub>-SCR mechanism over catalysts. All the catalysts were pretreated by the same procedure as the NH<sub>3</sub> adsorption experiment, and the reaction temperature was set at 200 °C. To investigate the reaction of NO + O<sub>2</sub> with adsorbed NH<sub>3</sub>, catalysts were exposed under 500 ppm NH<sub>3</sub> until saturated, and purged by N<sub>2</sub> for 1 h before 500 ppm NO and 5% O<sub>2</sub> were added. The same procedure was carried out but NO + O<sub>2</sub> was added firstly, followed by NH<sub>3</sub> introduced after N<sub>2</sub> purging to investigate the reaction of adsorbed nitrate species with NH<sub>3</sub>. The spectra with a resolution of 4 cm<sup>-1</sup> was recorded throughout the whole process by accumulation of 100 scans.

#### 2.3. NH<sub>3</sub>-SCR, NO/NH<sub>3</sub> oxidation activity and dynamic tests

The NH<sub>3</sub>-SCR activity test was carried out in a fixed-bed reactor heated by a tube furnace. The composition of the inlet gas was:  $[NO] = [NH_3] = 500$  ppm,  $[O_2] = [H_2O] = 5$  %, balanced by N<sub>2</sub>. The catalysts were screened to 40–60 mesh before being sealed with quartz wool in a quartz tube. The total gas flow was 500 ml/min with the GHSV = 400,000 h<sup>-1</sup>. The outlet gas was detected by an online Nicolet IS10 spectrometer, and the NO<sub>x</sub> conversion was calculated by the following equation:

$$NO_x \text{ conversion} = \left(1 - \frac{[NO_x]_{out}}{[NO_x]_{in}}\right) \times 100\% \text{ } (NO_x = NO + NO_2)$$

A NO oxidation experiment was carried out by the same procedure as the NH<sub>3</sub>-SCR experiment; however, the composition of the inlet gas was:  $[NO] = 500 \text{ ppm}, [O_2] = 5 \%$ , balanced by N<sub>2</sub>. The NO conversion was calculated by the following equation:

$$NO \ conversion = \left(1 - \frac{[NO]_{out}}{[NO]_{in}}\right) \times 100\%$$

An NH<sub>3</sub> oxidation experiment was also conducted by the same procedure as the NH<sub>3</sub>-SCR and NO oxidation experiments, with the composition of the inlet gas:  $[NH_3] = 500 \text{ ppm}$ ,  $[O_2] = 5 \%$ , balanced by N<sub>2</sub>. The NH<sub>3</sub> conversion was calculated by the following equation:

$$NH_3 \ conversion = \left(1 - \frac{[NH_3]_{out}}{[NH_3]_{in}}\right) \times 100\%$$

Meanwhile, the reaction rate was calculated by the equation below, where F is the flow rate of  $NO_x$  (mol/s), w is the mass of catalyst (g), and x is  $NO_x$  conversion. The Standard SCR rate was calculated by this equation.

$$r = \frac{F}{w}(-\ln(1-x))$$

# 3. Results

# 3.1. Catalytic performance

# 3.1.1. NH<sub>3</sub>-SCR activity test

The NH<sub>3</sub>-SCR test was carried out on the fresh and hydrothermally aged catalysts, and the standard SCR rate of catalysts with moderate Cu content was calculated and summarized in Fig. 1. For the fresh catalysts, the standard SCR rate rose with the increase of Cu loading over the whole temperature range. Meanwhile, there was a decline in the standard SCR rate around 350 °C. This so-called "seagull shape" profile was also observed in the studies of Cu-SSZ-13 [20,21]. After hydrothermal aging at 850 °C for 16 h, there was a remarkable increase in the standard SCR rate below 400 °C for all three catalysts; meanwhile, all aged catalysts presented a decline in the standard SCR rate over 450 °C. To find out the cause of this abnormal phenomenon, Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA were chosen to carry out further investigations. Furthermore, the results were different when the Cu content was too high or too low. The standard SCR rates of the fresh and aged catalysts with Cu content of 0.5 % and 2.3 % are presented in Fig. S1. When the Cu content was 0.5 %, no "seagull shape" profile could be observed, indicating that the reaction mechanism could be different. Meanwhile, the standard SCR rate for both Cu<sub>0.5</sub>-SSZ-39-HTA and Cu<sub>2.3</sub>-SSZ-39-HTA was lower than that of Cu<sub>0.5</sub>-SSZ-39-fresh and Cu<sub>2.3</sub>-SSZ-39-fresh. Further analysis of this interesting phenomenon will be included in the following sections.

# 3.1.2. NO and NH<sub>3</sub> oxidation test

NO oxidation and NH<sub>3</sub> oxidation experiments were conducted, and the profiles are presented in Fig. S2. In the temperature range from 150 °C to 300 °C, only slight conversion of NO was observed in both Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA. This result indicates that NO cannot be oxidized into NO<sub>2</sub> on either the fresh or aged catalysts, which rules out the possibility that the formation of NO<sub>2</sub> in the aged catalyst facilitates NO<sub>x</sub> conversion through the fast SCR process. In addition, the NH<sub>3</sub> oxidation profiles are depicted in Fig. S2(b). Hardly any conversion of NH<sub>3</sub> was observed for Cu<sub>1.8</sub>-SSZ-39-fresh from 150 °C to 550 °C. However, the conversion of NH<sub>3</sub> for Cu<sub>1.8</sub>-SSZ-39-HTA became noticeable when the temperature was higher than 275 °C, especially in the high-temperature range (over 450 °C). It has been reported that Cu<sub>x</sub>O<sub>y</sub> species in small-pore zeolites can facilitate NH<sub>3</sub> oxidation in the high-



temperature range, resulting in a decrease in NH<sub>3</sub>-SCR activity due to a shortage of NH<sub>3</sub> [8,9]. Therefore, the decrease in the SCR rate at high temperature in the Cu-SSZ-39-HTA catalysts could be due to the existence of  $Cu_xO_y$  species. However, further investigations were still needed.

#### 3.2. Changes in the framework

To investigate the difference in the framework between the fresh and the aged catalysts, XRD and NMR were carried out. The XRD patterns of Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA are presented in Fig. 2. As can be seen, Cu<sub>1.8</sub>-SSZ-39-fresh showed the XRD pattern of the AEI structure with good crystallinity. To calculate the change in the crystallinity of the catalysts after hydrothermal aging, the peak intensities at  $17.3^{\circ}$ ,  $20.8^{\circ}$ , 21.5°, 24.1° and 31.4° of Cu1.8-SSZ-39-fresh and Cu1.8-SSZ-39-HTA were compared. It was found that the crystallinity of the aged catalyst decreased by  $\sim$ 8% compared to the fresh one, which indicated that the long-range order of the catalyst was hardly affected by hydrothermal treatment. To further investigate changes in the coordination environment of Si and Al, <sup>27</sup>Al NMR and <sup>29</sup>Si NMR experiments were carried out, and the results are presented in Fig. 3(a) and (b), respectively. In the <sup>27</sup>Al NMR profile, the chemical shifts at 63 ppm and 4 ppm were assigned to the response of tetrahedral Al atoms and octahedral Al atoms, respectively. As can be seen, most of the framework Al are tetrahedrally coordinated in all catalysts. A peak for extra-framework octahedral Al atoms (~4 ppm) can be seen in H-SSZ-39 and Cu1.8-SSZ-39-fresh, and the intensity of the peak at 4 ppm is higher in H-SSZ-39 than in Cu<sub>1.8</sub>-SSZ-39-fresh, indicating that the ion-exchange process might wash off some extra-framework Al atoms, and the paramagnetic nature of Cu ions may also result in a decrease in this peak. However, there was no peak around 4 ppm observed in the <sup>27</sup>Al NMR spectrum of Cu<sub>1.8</sub>-SSZ-39-HTA. There could be two reasons: 1. The framework of Cu-SSZ-39 is reconstructed under the hydrothermal aging process, and the extraframework Al atoms come into the framework of Cu-SSZ-39. 2. Some CuAlO<sub>x</sub> species form, resulting in the disappearance of extra-framework Al atoms. In the <sup>29</sup>Si NMR profile, the chemical shifts at -104 ppm and-110 ppm were assigned to the response of Si(1Al) and Si(0Al) species, representing the Si atoms surrounded by 4 Si atoms or 3 Si & 1 Al atoms, respectively. The ratio of Si(1Al) atoms is 22 %, 25 % and 14 % in H-SSZ-39, Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA, respectively. The lower amount of Si atoms surrounded by 3 Si & 1 Al in the aged catalysts indicates that dealumination took place. Combining the results of <sup>27</sup>Al NMR and <sup>29</sup>Si NMR, we know that dealumination takes place in Cu<sub>1.8</sub>-SSZ-39-HTA, and the absence of the peak of octahedral Al is probably due to the formation of some  $CuAlO_{x}$  species



Fig. 2. XRD patterns of Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA.



Fig. 3. (a) <sup>27</sup>Al NMR and (b) <sup>29</sup>Si NMR profiles of Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA.

# 3.3. Changes in Cu species

An EPR experiment was conducted to detect the coordination environment of the Cu ions in the catalysts. As presented in Fig. 4, both Cu<sub>1.8</sub>-SSZ-39-fresh and Cu1.8-SSZ-39-HTA showed fourfold split hyperfine spectra with  $g_{II} = 2.40$  and  $A_{II} = 131$  G, which were assigned to the Cu<sup>2+</sup> species in d6r [7,22]. This result indicated that only one kind of EPR-active Cu<sup>2+</sup> ion was observed in both the fresh and the aged catalyst, and that the coordination environment of Cu<sup>2+</sup> ions did not change after hydrothermal aging. However, 39 % of Cu<sup>2+</sup> ions transformed into EPR-silent copper species in Cu<sub>1.8</sub>-SSZ-39-HTA, calculated by second-order integration of the EPR spectra, compared to Cu<sub>1.8</sub>-SSZ-39-fresh. Furthermore, Cu ions have an effect on the T—O—T atom vibration in zeolite, which would be influenced by NH<sub>3</sub> solvated Cu<sup>2+</sup>, resulting in a change in the T—O—T vibration. Therefore, NH<sub>3</sub>-DRIFTS is often chosen as a reliable means to investigate the locations of Cu ions. As can be seen in Fig. S3, only one negative peak at  $\sim$ 900 cm<sup>-1</sup> was observed in both Cu<sub>1.8</sub>-SSZ-39-fresh and  $Cu_{1,8}$ -SSZ-39-HTA, indicating that  $Cu^{2+}$  species near d6r was the only form of Cu ions, which was in accordance with the results of EPR [3,23]. Compared with Cu<sub>1 8</sub>-SSZ-39-fresh, the intensity of the negative peak for Cu18-SSZ-39-HTA was lower. The conclusion can be drawn from the results of EPR and NH<sub>3</sub>-DRIFTS that Cu<sup>2+</sup> ions near d6r were the only species in fresh catalysts, and that the amount of these species decreased after hydrothermal aging.

A  $H_2$ -TPR experiment was further carried out to investigate the changes in Cu species in the fresh and the aged catalysts, and the results

are presented in Fig. 5. Peak A and peak B in Cu18-SSZ-39-fresh and  $Cu_{1,8}$ -SSZ-39-HTA were assigned to the reduction of  $Cu^{2+}$  to  $Cu^{+}$  and Cu<sup>+</sup> to Cu<sup>°</sup>, respectively [24,25]. However, the reduction temperature in Cu<sub>1.8</sub>-SSZ-39-HTA was lower than that in Cu<sub>1.8</sub>-SSZ-39-fresh. A similar phenomenon was also reported in a previous study, in which we attributed to dealumination of the framework [26]. As we mentioned in the discussion on the <sup>29</sup>Si NMR result, dealumination took place after hydrothermal aging, and the restrictive effect of the framework on Cu ions could be weakened, causing Cu ions to be more easily reduced. Furthermore, two new peaks emerged for Cu<sub>1.8</sub>-SSZ-39-HTA. Peak C centered around 200-250 °C was attributed to the reduction of Cu<sub>x</sub>O<sub>y</sub> species [24,25,27]; peak D was assigned to the reduction of  $Cu^+$  to  $Cu^0$ however, these Cu<sup>+</sup> species were located in more stable sites [28,29]. The relative H<sub>2</sub> consumption of different Cu species was calculated, with the total amount of  $H_2$  consumed by  $Cu_{1.8}$ -SSZ-39-fresh taken as 1, and the results are presented in Fig. S4. In the results for Cu<sub>1 8</sub>-SSZ-39-fresh, the relative amount of  $H_2$  consumed by the reduction of  $Cu^{2+}$  to  $Cu^+$  is 60.5 %, and it is 39.5 % for the reduction of  $Cu^+$  to  $Cu^0$ . This result indicates there are Cu<sup>+</sup> species in more stable locations and they cannot be reduced at temperatures lower than 900 °C. In Cu<sub>1 8</sub>-SSZ-39-HTA, the relative amount of H<sub>2</sub> consumed by the transformation of Cu<sup>2+</sup> to Cu<sup>+</sup> is 37.2 %. Compared to the fresh catalyst, 39 % of Cu<sup>2+</sup> ions were lost, and this is in accordance with the EPR result that 39 % of  $Cu^{2+}$  ions were lost after hydrothermal aging. Meanwhile, 14.9 % of the H<sub>2</sub> was consumed by Cu<sub>x</sub>O<sub>y</sub> species. A UV-vis experiment was carried out to investigate the coordination environment of Cu, and the results are presented in Fig. S5. To better compare the difference between the fresh and aged catalysts, we subtracted the intensity of Cu<sub>1.8</sub>-SSZ-39-fresh from that of Cu<sub>1.8</sub>-SSZ-39-HTA, and the obtained profile is also given in Fig. S5. The



Fig. 4. EPR profiles of Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA.



Fig. 5. H<sub>2</sub>-TPR profiles of Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA.

signal around 48300 cm<sup>-1</sup> was assigned to the ligand-to-metal charge transfer (LMCT) from  $O^2$  to  $Cu^{2+}$  (or  $Al^{3+}$ ) of isolated  $Cu^{2+}$  [30,31]. The broad peak between 30,000 and 45,000 cm<sup>-1</sup> was due to the electron transfer between O and Cu in Cu<sub>x</sub>O<sub>y</sub> species. However, we still cannot differentiate whether these Cu<sub>x</sub>O<sub>y</sub> species is CuO or Cu<sub>2</sub>O from H<sub>2</sub>-TPR and UV-vis results. XANES spectra of Cu1.8-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA are depicted in Fig. 6, with Cu<sub>2</sub>O and CuO as references. The adsorption of energy at 8985 and 8987 eV was assigned to the  $1s \rightarrow 4p_{xy}$  electronic transition of  $Cu^+$  in  $Cu_2O$  and  $1s \rightarrow 4p_z$  electronic transition of  $Cu^{2+}$  in CuO, respectively [7,32]. Compared to Cu1.8-SSZ-39-fresh, the adsorption of energy around 8985 eV and 8987 eV was stronger in  $Cu_{1.8}$ -SSZ-39-HTA, indicating that there was a mixture of Cu<sub>2</sub>O and CuO species in the aged catalyst. To quantify the amounts of different Cu species in  $Cu_{1.8}$ -SSZ-39-HTA, we deconvoluted the XANES data. We took Cu<sub>2</sub>O, CuO and Cu<sub>1.3</sub>-SSZ-39-fresh as references, and found that 84 % of the Cu species was Cu<sup>2+</sup>, 14 % was CuO and 2 % was Cu<sub>2</sub>O in Cu<sub>1.8</sub>-SSZ-39-HTA. As we mentioned in the discussion on H<sub>2</sub>-TPR results, in the aged catalyst, 14.9 % of the relative H<sub>2</sub> amount is consumed by  $Cu_xO_y$  species, and 37.2 % of H<sub>2</sub> is consumed by the reduction of  $Cu^{2+}$  to  $Cu^+$ . This result means that if the total amount of H<sub>2</sub> consumed by  $Cu_xO_y$  and  $Cu^{2+}$  is taken as 100%, so that 29 % of H<sub>2</sub> is consumed by  $Cu_rO_r$  species and 71 % of H<sub>2</sub> is consumed by  $Cu^{2+}$  in Cu<sub>1.8</sub>-SSZ-39-HTA. 1 mol of CuO and Cu<sub>2</sub>O can consume 1 mol of H<sub>2</sub>, and the reduction of 2 mol of  $Cu^{2+}$  to  $Cu^+$  consumes 0.5 mol of H<sub>2</sub>. From the result of XANES, we know that 84 %, 14 % and 2 % of Cu species are  $Cu^{2+}$ , CuO and Cu<sub>2</sub>O in Cu<sub>1.8</sub>-SSZ-39-HTA, respectively. Thus in theory, 26 % of H<sub>2</sub> should be consumed by Cu<sub>x</sub>O<sub>y</sub> species, and 74 % of H<sub>2</sub> should be consumed by  $Cu^{2+}$  ions. This number is quite close to the results we calculated from H<sub>2</sub>-TPR showing that 29 % of H<sub>2</sub> is consumed by Cu<sub>x</sub>O<sub>y</sub> species and 71 % by Cu<sup>2+</sup>. Based on the results of H<sub>2</sub>-TPR, UV-vis and XANES, it can be concluded that Cu<sub>x</sub>O<sub>y</sub> species emerged after hydrothermal aging. In summary, from the investigation of Cu species, we can conclude that after the hydrothermal aging process, some  $Z_2Cu^{2+}$  near d6r transformed into Cu<sub>x</sub>O<sub>y</sub> species. The formation of these Cu<sub>x</sub>O<sub>y</sub> species might facilitate the standard SCR rate of Cu-SSZ-39. However, further analysis will be included in the following sections.

TEM was used to observe  $Cu_xO_y$  species in the aged catalysts, and the results are presented in Fig. 7. It can be seen from Fig. 7(a) that the pores and channels of  $Cu_{1.8}$ -SSZ-39-fresh are arranged in a rather regular order. After hydrothermal aging at 850 °C, several light spots emerged in the images of  $Cu_{1.8}$ -SSZ-39-HTA, and these spots are believed to be  $Cu_xO_y$  clusters. The size of these  $Cu_xO_y$  clusters is around 1~3 nm. The dimensions of AEI cages are 13.7 Å, 12.6 Å and 18.5 Å, which means that the size of these  $Cu_xO_y$  clusters might be larger than the AEI cages, indicating they are no longer in the cages of Cu-SSZ-39; however, these  $Cu_xO_y$  clusters are still believed to be stuck inside the catalysts.



Fig. 6. XANES spectra of  $Cu_{1.8}$ -SSZ-39-fresh and  $Cu_{1.8}$ -SSZ-39-HTA.  $Cu_{1.3}$ -SSZ-39-fresh, CuO and  $Cu_2O$  are presented as references.

#### 3.4. Reaction mechanism

#### 3.4.1. Contribution of $Cu_xO_y$ species

In order to further investigate the contribution of  $Cu_xO_y$  species to SCR, the  $Cu_{1.8}$ -SSZ-39-fresh catalyst was hydrothermally aged at various temperatures. An *in situ* DRIFTS of NH<sub>3</sub> adsorption experiment was used to detect changes in the amount of  $Cu^{2+}$  ions, and the results are presented in Fig. S6. It was found that the amount of  $Cu^{2+}$  ions decreases with the aging temperature, which indicates that the amount of  $Cu_xO_y$  species increases with the aging temperature. The standard SCR rates at 200/250 °C of these catalysts aged at various temperature are presented in Fig. 8. The standard SCR rate increases with the aging temperature; in other words, the standard SCR rate increases with  $Cu_xO_y$  content. Thus, we have proved that  $Cu_xO_y$  species contribute to low-temperature deNO<sub>x</sub> performance.

Furthermore, we tried to dissolve some  $Cu_xO_y$  species in  $Cu_{1.8}$ -SSZ-39-HTA to verify whether they are the key site for deNO<sub>x</sub> performance. The specific treatment process is presented in the experimental section. Before the NH<sub>3</sub>-SCR test, the catalysts were treated at 550 °C under NH<sub>3</sub>-SCR conditions to get activated and decompose HNO<sub>3</sub> species. The Cu<sup>2+</sup> contents of the HNO3-treated catalysts were detected by in situ DRIFTS of NH<sub>3</sub> adsorption, and the result is shown in Fig. S6. The SCR rates at 200/ 250 °C of the catalysts treated by HNO<sub>3</sub> are presented in Fig. 8. It can be seen that after HNO3 treatment, the SCR rate at 200 °C and 225 °C decreased compared to Cu<sub>1.8</sub>-SSZ-39-HTA; however, it is still higher than  $Cu_{1.8}$ -SSZ-39-fresh. In the meantime, the relative  $Cu^{2+}$  content of the HNO3-treated catalyst was between that of Cu1.8-SSZ-39-fresh and Cu<sub>1 8</sub>-SSZ-39-HTA. As a result, the conclusion can be drawn that HNO<sub>3</sub> treatment dissolves some of the  $Cu_xO_y$  species, resulting in a decrease in the SCR rate at 200 °C and 225 °C to some extent. In other words, the  $Cu_xO_y$  species in the aged catalysts are proved to be the key site for lowtemperature  $deNO_x$  performance.

#### 3.4.2. In situ DRIFTS experiments

To investigate the reaction mechanism over Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA, a series of in situ DRIFTS experiments were performed. First, reaction was carried out between pre-absorbed NH<sub>3</sub> and  $NO + O_2$ , and the results are depicted in Fig. 9. To better compare the acidity of the fresh and aged catalyst, spectra at 0 min when catalysts were saturated with NH<sub>3</sub> are presented in Fig. S7. The negative peaks at 3606 and 3585 cm<sup>-1</sup> were assigned to the consumption of OH in Brønsted acid sites by NH<sub>3</sub> adsorption. The IR absorbance around 3400-3100 cm<sup>-1</sup> was attributed to the stretching vibration of N-H bonds, and the peaks at 3326, 3273 and 3188 cm<sup>-1</sup> were assigned to NH<sup>+</sup><sub>4</sub> species [33,34]. The peaks at 1617 and 1437 cm<sup>-1</sup> were assigned to the bending vibration of N-H bonds of coordinated NH3 on Lewis acid sites and Brønsted acid sites, respectively [35,36]. Furthermore, the negative peaks around ~900 cm<sup>-1</sup> were assigned to the zeolite T—O—T vibration disrupted by Cu<sup>2+</sup>, which is thoroughly discussed in Fig. S3. In the aged catalyst, the negative peaks at 3604 and 3582 cm<sup>-1</sup> were much weaker than those in the fresh catalysts, indicating that the Brønsted acid sites were partly damaged by the aging process. A similar conclusion can also be drawn from the decrease in peak heights at 3335, 3273, 3188 and 1436 cm<sup>-1</sup>, which also represent the adsorption of NH<sub>3</sub> on Brønsted acid sites.

The spectrum and heat map of Cu<sub>1.8</sub>-SSZ-39-fresh are presented in Fig. 9(a) and (b), respectively. It can be observed that the NH<sub>3</sub> adsorbed on both Lewis and Brønsted acid sites decreased after the introduction of NO + O<sub>2</sub>. The peak at 1617 cm<sup>-1</sup> corresponding to NH<sub>3</sub> on Lewis acid sites kept decreasing for the first 7 min, and then the intensity did not change anymore. This is because the peaks of nitrate species also emerge around this wavenumber, and stay constant after 7 min. However, it can be concluded that NH<sub>3</sub> adsorbed on Lewis acid sites is consumed by around 7 min. In the meantime, the peak at 1437 cm<sup>-1</sup> representing NH<sub>3</sub> on Brønsted acid sites still existed even at 30 min. This indicated that the consumption of NH<sub>3</sub> on Lewis acid sites was much faster than that on



Fig. 7. TEM images of (a) Cu<sub>1.8</sub>-SSZ-39-fresh and (b) Cu<sub>1.8</sub>-SSZ-39-HTA.



**Fig. 8.** The relation between SCR rate and  $Cu^{2+}$  content of Cu-SSZ-39 catalysts after hydrothermal aging at different temperatures and treatment by HNO<sub>3</sub>.

Brønsted acid sites. However, the trend of peak intensities was a little different for Cu<sub>1.8</sub>-SSZ-39-HTA. As can be seen in Fig. 9(c) and (d), the peak at 1436 cm<sup>-1</sup> increased after NO and O<sub>2</sub> were introduced. At around 4 min, this peak rose to a maximum, and then began to decrease. It is worth mentioning that apart from NH<sub>3</sub> adsorbed on Brønsted acid sites, the peaks for nitrate species also emerge around 1400~1500 cm<sup>-1</sup> [25,36,37]. The increase in peak intensity around 1436 cm<sup>-1</sup> could be due to the formation nitrate species on the aged catalyst. Meanwhile, the consumption of NH<sub>3</sub> adsorbed on Lewis acid sites was still faster than on Brønsted acid sites. However, it took a little longer for NH<sub>3</sub> adsorbed on Lewis acid sites to be consumed for the aged catalyst than the fresh catalyst. This phenomenon indicated that the reaction pathway may be different in Cu<sub>1.8</sub>-SSZ-39-fresh and Cu<sub>1.8</sub>-SSZ-39-HTA, and that nitrate species formed more easily on the aged catalyst.

In order to further investigate the reaction process for the fresh and aged catalysts, the sequence for the introduction of gas was shifted. NO and  $O_2$  were firstly introduced to the catalysts until saturation, and then NH<sub>3</sub> was introduced at 0 min after purging by N<sub>2</sub>. The spectra of this process are shown in Fig. S8, and for convenience of comparison, the spectra at 0 min when NO and  $O_2$  were saturated are presented in Fig. S9. The peaks around  $1500-1700 \text{ cm}^{-1}$  were assigned to nitrate species adsorbed on Cu<sup>2+</sup> ions, and the intensity of these peaks was stronger in Cu<sub>1.8</sub>-SSZ-39-HTA [25,36,37]. In the meantime, new peaks around  $1300-1500 \text{ cm}^{-1}$  could be observed for the aged catalyst, and

these species were attributed to bridging nitrates and ionic nitrates [38, 39]. Compared with Cu<sub>1.8</sub>-SSZ-39-fresh, more amounts and types of nitrate species were observed in Cu<sub>1.8</sub>-SSZ-39-HTA, indicating that nitrate species were formed more easily in Cu<sub>1.8</sub>-SSZ-39-HTA. After NH<sub>3</sub> was introduced, the peaks for nitrate species disappeared and overlapped with the peaks for Lewis and Brønsted acid sites. The decrease in peaks around 1300–1700 cm<sup>-1</sup> indicated that nitrite species can react with NH<sub>3</sub>, and all the nitrate species were consumed within 5 min in both the fresh and aged catalysts. These results proved that the adsorbed nitrate species can react with NH<sub>3</sub> at a rather rapid rate. Meanwhile, more nitrate species formed in  $Cu_{1.8}$ -SSZ-39-HTA, facilitating the reaction of nitrate species with NH3. A similar phenomenon was also observed in a recent study published by our group. We found that NH<sub>4</sub>NO<sub>3</sub> species were easily formed in Cu-SSZ-39, and they reacted with NO at a rapid rate [40]. As we observed in Fig. 9, the reaction between  $\rm NH_3$  adsorbed on Lewis acid sites and NO +  $\rm O_2$  was slower in Cu<sub>1.8</sub>-SSZ-39-HTA. However, the reaction between adsorbed nitrate species and NH<sub>3</sub> was faster on the aged catalysts, and this process was probably why the aged catalyst performed better in NH<sub>3</sub>-SCR than the fresh one. Further discussions on the NH3-SCR pathway of the two catalysts will be included in the next section.

# 4. Discussion

#### 4.1. Abnormal hydrothermal aging effect

As we mentioned in the introduction section, it is quite abnormal that the catalytic activity of these small pore zeolites improved after hydrothermal aging. Fickel et al. were the first to find that after hydrothermal aging, the NH3-SCR performance of Cu-SAPO-34 was improved [14]. Wang et al. further investigated this phenomenon, and found that the migration of Cu<sub>x</sub>O<sub>y</sub> clusters on the surface of the catalyst into active Cu<sup>2+</sup> species resulted in the increase of catalytic activity [16]. Afterwards, similar circumstances were observed in numbers of studies, and the same conclusion was drawn [2,15,41]. Furthermore, an increase in NH<sub>3</sub>-SCR activity after hydrothermal aging was also observed in Cu-LTA zeolites by Hong and Nam et al. During the aging process, Cu<sup>+</sup> migrated from sod cages into single 6-rings, along with the oxidation of Cu<sup>+</sup> into Cu<sup>2+</sup>, which resulted in the improvement of catalytic performance [17,42]. However, the circumstance was quite different in Cu-SSZ-39. Through the investigations on Cu species over Cu1.8-SSZ-39-fresh and Cu1.8-SSZ-39-HTA, the conclusion was drawn that the formation of Cu<sub>x</sub>O<sub>y</sub> species contributed to the increase in low-temperature catalytic activity after hydrothermal aging. In the study of ZSM-5, Pereda-Ayo et al. found that Cu<sub>x</sub>O<sub>y</sub> species oxidized NO



Fig. 9. (a) In situ DRIFTS spectra and (b) heat map of  $Cu_{1.8}$ -SSZ-39-fresh exposed to  $NO + O_2$  after being saturated by  $NH_3$ . (c) In situ DRIFTS spectra and (d) heat map of  $Cu_{1.8}$ -SSZ-39-HTA exposed to  $NO + O_2$  after being saturated by  $NH_3$ .

into NO<sub>2</sub>, which favored the low-temperature NH<sub>3</sub>-SCR activity [43]. Nevertheless, no NO<sub>2</sub> was observed in the oxidation of NO in this study, neither in Cu<sub>1.8</sub>-SSZ-39-fresh nor in Cu<sub>1.8</sub>-SSZ-39-HTA. As a result, the function of Cu<sub>x</sub>O<sub>y</sub> species in Cu-SSZ-39 was different from that in Cu-ZSM-5, which will be thoroughly demonstrated in the following sections.

It is worth mentioning that the catalytic activity of Cu-SSZ-39 with

very low or high Cu loading was not improved after hydrothermal aging. As presented in Fig. S1, the catalytic activity of Cu<sub>0.5</sub>-SSZ-39-fresh increased with rising temperature, and no "seagull shape" profile was observed. In the study of Cu-SSZ-13, a "seagull shape" profile existed in NH<sub>3</sub>-SCR tests when Cu loading was low [13,20,21]. Under NH<sub>3</sub>-SCR conditions, NH<sub>3</sub> coordinates with Cu ions in the low-temperature range, which facilitates the mobility of Cu ions. Therefore, Cu ions can move

among zeolite cages, forming transient Cu dimers, which activate O<sub>2</sub> in the oxidation of  $Cu^+$  into  $Cu^{2+}$  [44–46]. When the temperature rises to around 350 °C, NH<sub>3</sub> becomes detached from Cu ions, and Cu<sup>+</sup>/Cu<sup>2+</sup> anchor to the ion-exchanged sites, becoming active centers for the reaction. NH<sub>3</sub>-SCR rate decreases without the good mobility of Cu ions. When the temperature further rises, the effective collision probability of reactant molecules increases; as a consequence, the catalytic activity rises again. However, in Cu<sub>0.5</sub>-SSZ-39-fresh, the standard SCR rate was very low from 150 °C to 350 °C. This was probably due to the content of Cu being so low that the Cu ions could not meet each other to combine into pairs even with the help of NH<sub>3</sub>. From another prospective, Cu<sub>x</sub>O<sub>v</sub> species could hardly form during the hydrothermal aging process due to the deficiency of Cu ions, so that the catalytic activity was not improved. Furthermore, we also found that Cu ions could help to stabilize framework atoms during the hydrothermal aging process [26]. However, if the Cu loading was too high, Cu<sub>x</sub>O<sub>v</sub> clusters would form, which facilitated the deterioration of the framework [12]. The XRD profiles of the fresh and aged catalysts with Cu loading of 0.5 % and 2.3 % are presented in Fig. S10. The crystallinity of Cu<sub>0.5</sub>-SSZ-39-HTA showed little change compared with Cu<sub>0.5</sub>-SSZ-39-fresh; however, a remarkable decrease in crystallinity was observed in Cu<sub>2.3</sub>-SSZ-39-HTA, indicating that the framework was affected by the hydrothermal aging process. The same phenomenon was more obvious in a Cu<sub>3.5</sub>-SSZ-39 catalyst in our previous study with much higher Cu loading [3]. This result indicated that excessive Cu ions existed in Cu<sub>2.3</sub>-SSZ-39, leading to Cu<sub>x</sub>O<sub>y</sub> clusters being formed and damaging the skeleton. As a result, the catalytic activity of Cu<sub>0.5</sub>-SSZ-39-HTA and Cu<sub>2.3</sub>-SSZ-39-HTA was lower than the fresh catalysts.

#### 4.2. Function of Cu<sub>x</sub>O<sub>v</sub> species in Cu-SSZ-39

 $Cu_xO_y$  species have generally not been recognized as active sites for NH<sub>3</sub>-SCR in small-pore zeolites, and they were believed to do harm to the high-temperature catalytic activity due to the non-selective catalytic oxidation of NH<sub>3</sub> [8,9]. However, different points of view were also held by some other researchers. In the study of Cu-SAPO-34, Weng et al. observed that the low-temperature catalytic activity decreased while the high-temperature NO<sub>x</sub> conversion improved after hydrothermal aging. Through the investigation of Cu species, it was discovered that the conversion of Cu<sub>x</sub>O<sub>y</sub> species into Cu<sup>2+</sup> species resulted in this phenomenon, and they concluded that Cu<sub>x</sub>O<sub>y</sub> species were beneficial to low-temperature catalytic activity [47]. With the help of DFT theoretical calculations, [Cu-O-Cu]<sup>2+</sup> species inside CHA cages were also proved to be active centers for NH<sub>3</sub>-SCR in Cu-SAPO-34 by Du et al. [48]. Furthermore, Grunwaldt et al. investigated the NH3-SCR mechanism over Cu-SSZ-13 with low and high Cu loading. A conclusion was drawn that dimeric Cu<sup>+</sup>-O<sub>2</sub>-Cu<sup>+</sup> species formed in highly loaded catalysts, relating to the good low-temperature catalytic activity [49].

In this study, we have also proved that Cu<sub>x</sub>O<sub>y</sub> species are NH<sub>3</sub>-SCR active in Cu-SSZ-39. As a result, we need to reexamine the function of Cu<sub>x</sub>O<sub>y</sub> species in NH<sub>3</sub>-SCR over small-pore zeolites. The whole NH<sub>3</sub>-SCR process in small-pore zeolites can be recognized as a redox cycle of Cu<sup>+</sup> and Cu<sup>2+</sup> ions. In the reduction half-cycle of Cu<sup>2+</sup> into Cu<sup>+</sup>, NO and NH<sub>3</sub> co-activate  $Cu^{2+}$ , resulting in the formation of  $N_2$  and  $H_2O$ . In the oxidation half cycle, two Cu<sup>+</sup> coordinated with NH<sub>3</sub> migrate into one cage to activate O<sub>2</sub>, forming transient Cu-dimers which further react with NO when Cu loading is low. Due to the electrostatic tethering to skeleton Al atoms, the formation of  $[Cu^{l}(NH_{3})_{2}]^{+}-O_{2}-[Cu^{l}(NH_{3})_{2}]^{+}$  intermediates is the rate-limiting step. However, things are different when Cu loading is high.  $Cu_xO_y$  species formed when catalysts were highly loaded, and the formed  $Cu_xO_y$  species facilitated the low-temperature SCR performance [21,49]. In this study, hydrothermal aging treatment created CuxOy species in Cu-SSZ-39, and these CuxOy species act as active centers. The hydrothermal aging process induces the formation of  $Cu_xO_y$  species even when the Cu loading is not very high, so that the aged catalysts can perform as well as the catalysts with high Cu loading.

This process can be proved by the standard SCR rate profile of the aged catalysts in that no "seagull shape" profile was observed in the aged catalysts, whatever the Cu loading. As we discussed above, the reason for the "seagull shape" was due to the change in the reaction mechanism around 350 °C. With the formation of  $Cu_xO_y$  species, the migration of  $Cu^+$  ions through cages no longer restricts the deNO<sub>x</sub> performance in the low-temperature range, leading to the disappearance of the "seagull shape". To sum up, the hydrothermal aging process created active  $Cu_xO_y$  species, so that the low-temperature catalytic activity was improved.

Furthermore, it is quite interesting to notice that it has never been reported that the hydrothermal aging process could facilitate the lowtemperature catalytic activity of Cu-SSZ-13. This is due to the structural differences between Cu-SSZ-13 and Cu-SSZ-39. In a previous study by our group, we compared the hydrothermal stability of Cu-SSZ-13 and Cu-SSZ-39. The better hydrothermal stability of Cu-SSZ-39 was due to the fact that more paired framework Al atoms were found in Cu-SSZ-39, which resulted in the formation of more hydrothermally stable Cu<sup>2+</sup> species. Furthermore, the channels in Cu-SSZ-39 are more tortuous. which hinders the detachment of framework Al atoms [3]. As we reached a deeper understanding of the inactivation mechanism after hydrothermal aging, researchers found that the formation of CuAlO<sub>r</sub> species, rather than  $Cu_xO_y$ , was the real reason that small-pore zeolites lose catalytic activity [9,50]. Compared with Cu-SSZ-39, CuAlO<sub>x</sub> species formed more easily in Cu-SSZ-13 due to the framework instability; as a consequence, the catalytic activity was never promoted in Cu-SSZ-13 after hydrothermal aging. From another aspect, the promotion effect of Cu<sub>x</sub>O<sub>y</sub> species on the catalytic activity of Cu-SSZ-13 may not be as obvious as that of Cu-SSZ-39. The CHA structure is very beneficial to the mobility of  $Cu(NH_3)_x$ , resulting in excellent catalytic activity, while the AEI structure with more tortuous channels inhibits the migration of Cu  $(NH_3)^+_x$  ions. As a result, the low-temperature catalytic activity of the fresh Cu-SSZ-39 catalyst was lower than that of Cu-SSZ-13 [3]. The small  $Cu_xO_y$  clusters are more active than  $Cu^{2+}$  ions in Cu-SSZ-39, so that the formation of these Cu<sub>x</sub>O<sub>y</sub> clusters contributed greatly to the low-temperature catalytic activity. As a result, improvement of the low-temperature catalytic activity after hydrothermal aging was observed in Cu-SSZ-39 but not Cu-SSZ-13.

# 5. Conclusion

Due to the regeneration of DPF, hydrothermal aging is inevitable for SCR catalysts in heavy-duty diesel vehicles. Unlike typical NH<sub>3</sub>-SCR catalysts, we found an unexpected increase in the low-temperature NH<sub>3</sub>-SCR catalytic activity over Cu-SSZ-39 with moderate Cu content after hydrothermal aging. During the aging process, dealumination of SSZ-39 only slightly occurred and a portion of the  $Cu^{2+}$  accumulated to form  $Cu_xO_y$  species. The formation of  $Cu_xO_y$  species facilitated the formation of nitrate species, which bypassed the rate-determining step of migration of Cu<sup>+</sup> species to activate O<sub>2</sub> and NO, resulting in the unexpected improvement of SCR activity. Moreover, only the Cu-SSZ-39 catalysts with suitable Cu contents (1.3-2.0 wt.%) could be improved in this way, while both too little and too much Cu caused deterioration of NH3-SCR activity of Cu-SSZ-39 after hydrothermal aging. Cu-SSZ-39 is already known for its exceptional hydrothermal stability and the new finding of the increase of catalytic activity after hydrothermal aging provides further potential for the actual application of Cu-SSZ-39 for the removal of  $NO_x$  from diesel exhaust.

## CRediT authorship contribution statement

Jinpeng Du: Data curation, Investigation, Formal analysis, Writing original draft, Writing - review & editing. Yulong Shan: Conceptualization, Methodology, Validation, Writing - review & editing, Project administration. Yu Sun: Data curation, Investigation, Validation. Meng Gao: Data curation, Investigation, Validation. Zhongqi Liu: Data curation, Investigation, Validation. Xiaoyan Shi: Conceptualization, Methodology, Validation. **Yunbo Yu:** Conceptualization, Methodology, Validation. **Hong He:** Conceptualization, Writing - review & editing, Project administration, Resources, Supervision.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21906172, 21637005) and Ozone Formation Mechanism and Control Strategies Project of Research Center for Eco-Environmental Sciences, CAS (RCEES-CYZX-2020). We thank the 1W1B beamline of Beijing Synchrotron Radiation Facility for their support of the XAFS experiments.

#### Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2021.120237.

#### References

- [1] Y. Shan, J. Du, Y. Zhang, W. Shan, X. Shi, Y. Yu, R. Zhang, X. Meng, F.-S. Xiao, H. He, Selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>: opportunities and challenges of Cu-based small-pore zeolites, Natl. Sci. Rev. 8 (2021), https://doi.org/10.1093/ nsr/nwab010.
- [2] D. Wang, Y. Jangjou, Y. Liu, M.K. Sharma, J. Luo, J. Li, K. Kamasamudram, W. S. Epling, A comparison of hydrothermal aging effects on NH<sub>3</sub>-SCR of NO<sub>x</sub> over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Appl. Catal. B 165 (2015) 438–445.
- [3] Y. Shan, W. Shan, X. Shi, J. Du, Y. Yu, H. He, A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13, Appl. Catal. B 264 (2020) 118511–118520.
- [4] J. Du, Y. Shan, G. Xu, Y. Sun, Y. Wang, Y. Yu, W. Shan, H. He, Effects of SO<sub>2</sub> on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, Catal. Sci. Technol. 10 (2020) 1256–1263.
- [5] H. Xu, W. Chen, Q. Wu, C. Lei, J. Zhang, S. Han, L. Zhang, Q. Zhu, X. Meng, D. Dai, S. Maurer, A.-N. Parvulescu, U. Müller, W. Zhang, T. Yokoi, X. Bao, B. Marler, D. E. De Vos, U. Kolb, A. Zheng, F.-S. Xiao, Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite, J. Mater. Chem. A 7 (2019) 4420–4425.
- [6] X. Ye, J.E. Schmidt, R.P. Wang, I.K. van Ravenhorst, R. Oord, T. Chen, F. de Groot, F. Meirer, B.M. Weckhuysen, Deactivation of Cu-Exchanged automotive-emission NH<sub>3</sub>-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy, Angew. Chem. Int. Ed. Engl. 132 (2020) 15740–15747.
- [7] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.-S. Nam, B.K. Cho, Hydrothermal stability of Cu-SSZ-13 for reducing NO<sub>x</sub> by NH<sub>3</sub>, J. Catal. 311 (2014) 447–457.
- [8] Y. Shan, J. Du, Z. Yan, Y. Yu, H. He\*, SSZ-13 synthesized by solvent-free method: a potential candidate for NH<sub>3</sub>-SCR catalyst with high activity and hydrothermal stability, Ind. Eng. Chem. Res. 58 (2019) 5397–5403.
- [9] Yue Ma, X. Wu, S. Cheng, L. Cao, L. Liu, Y. Xu, J. Liu, R. Ran, Z. Si, D. Weng, Relationships between copper speciation and Brønsted acidity evolution over Cu-SSZ-13 during hydrothermal aging, Appl. Catal. A 602 (2020) 117650–117661.
- [10] H. Kubota, C. Liu, T. Toyao, Z. Maeno, M. Ogura, N. Nakazawa, S. Inagaki, Y. Kubota, K. Shimizu, Formation and reactions of NH<sub>4</sub>NO<sub>3</sub> during transient and SteadyState NH<sub>3</sub>-SCR of NO<sub>x</sub> over H-AFX zeolites: spectroscopic and theoretical studies, ACS Catal. 10 (2020) 2334–2344.
- [11] S. Li, Y. Zheng, F. Gao, J. Szanyi, W.F. Schneider, Experimental and computational interrogation of fast SCR mechanism and active sites on H-Form SSZ-13, ACS Catal. 7 (2017) 5087–5096.
- [12] J. Song, Y. Wang, E.D. Walter, N.M. Washton, D. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: implications from atomic-level understanding of hydrothermal stability, ACS Catal. 7 (2017) 8214–8227.
- [13] F. Gao, C.H.F. Peden, Recent progress in atomic-level understanding of Cu/SSZ-13 selective catalytic reduction catalysts, Catalysts 8 (2018) 140–162.
- [14] D.W. Fickel, E. D'Addio, J.A. Lauterbach, R.F. Lobo, The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites, Appl. Catal. B 102 (2011) 441–448.
- [15] J. Du, Y. Shan, W. Zhang, Y. Yu, W. Shan, H. He, Investigation of suitable templates for one-pot-synthesized CuSAPO-34 in NO<sub>x</sub> abatement from diesel vehicle exhaust, Environ. Sci. Technol. 54 (2020) 7870–7878.
- [16] L. Wang, J.R. Gaudet, W. Li, D. Weng, Migration of Cu species in Cu/SAPO-34 during hydrothermal aging, J. Catal. 306 (2013) 68–77.

- [17] D. Jo, T. Ryu, G.T. Park, P.S. Kim, C.H. Kim, I.-S. Nam, S.B. Hong, Synthesis of high-silica LTA and UFI zeolites and NH<sub>3</sub>–SCR performance of their copperexchanged form, ACS Catal. 6 (2016) 2443–2447.
- [18] T. Ryu, N.H. Ahn, S. Seo, J. Cho, H. Kim, D. Jo, G.T. Park, P.S. Kim, C.H. Kim, E. L. Bruce, P.A. Wright, I.S. Nam, S.B. Hong, Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH<sub>3</sub>-SCR catalysts, Angew. Chem. Int. Ed. Engl. 56 (2017) 3256–3260.
- [19] T. Sonoda, T. Maruo, Y. Yamasaki, N. Tsunoji, Y. Takamitsu, M. Sadakane, T. Sano, Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, J. Mater. Chem. A 3 (2015) 857–865.
- [20] F. Gao, E.D. Walter, M. Kollar, Y. Wang, J. Szanyi, C.H.F. Peden, Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions, J. Catal. 319 (2014) 1–14.
- [21] F. Gao, D. Mei, Y. Wang, J. Szanyi, C.H. Peden, Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis, J. Am. Chem. Soc. 139 (2017) 4935–4942.
- [22] F. Gao, E.D. Walter, E.M. Karp, J. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H. F. Peden, Structure–activity relationships in NH<sub>3</sub>-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300 (2013) 20–29.
- [23] Y. Wang, X. Shi, Y. Shan, J. Du, K. Liu, H. He, Hydrothermal stability enhancement of Al-Rich Cu-SSZ-13 for NH<sub>3</sub> selective catalytic reduction reaction by ion exchange with cerium and samarium, Ind. Eng. Chem. Res. 59 (2020) 6416–6423.
- [24] L. Xie, F. Liu, X. Shi, F.-S. Xiao, H. He, Effects of post-treatment method and Na cocation on the hydrothermal stability of Cu–SSZ-13 catalyst for the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, Appl. Catal. B 179 (2015) 206–212.
- [25] Y. Shan, J. Du, Y. Zhang, X. Shi, Y. Yu, W. Shan, H. He, Hydrothermal aging alleviates the inhibition effects of NO<sub>2</sub> on Cu-SSZ-13 for NH<sub>3</sub>-SCR, Appl. Catal. B 275 (2020) 119105–119114.
- [26] Y. Shan, J. Du, Y. Yu, W. Shan, X. Shi, H. He, Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH<sub>3</sub>-SCR reaction, Appl. Catal. B 266 (2020) 118655–118666.
- [27] Z. Chen, C. Fan, L. Pang, S. Ming, P. Liu, T. Li, The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NO<sub>x</sub> reduction by NH<sub>3</sub>-SCR, Appl. Catal. B 237 (2018) 116–127.
- [28] Z. Zhao, R. Yu, R. Zhao, C. Shi, H. Gies, F.-S. Xiao, D. De Vos, T. Yokoi, X. Bao, U. Kolb, M. Feyen, R. McGuire, S. Maurer, A. Moini, U. Müller, W. Zhang, Cuexchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH<sub>3</sub>-SCR catalyst: effects of Na<sup>+</sup> ions on the activity and hydrothermal stability, Appl. Catal. B 217 (2017) 421–428.
- [29] S. Han, Q. Ye, S. Cheng, T. Kang, H. Dai, Effect of the hydrothermal aging temperature and Cu/AI ratio on the hydrothermal stability of CuSSZ-13 catalysts for NH<sub>3</sub>-SCR, Catal. Sci. Technol. 7 (2017) 703–717.
- [30] S.A. Bates, A.A. Verma, C. Paolucci, A.A. Parekh, T. Anggara, A. Yezerets, W. F. Schneider, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13, J. Catal. 312 (2014) 87–97.
- [31] K. Leistner, K. Xie, A. Kumar, K. Kamasamudram, L. Olsson, Ammonia desorption peaks can be assigned to different copper sites in Cu/SSZ-13, Catal. Lett. 147 (2017) 1882–1890.
- [32] R. Li, Y. Zhu, Z. Zhang, C. Zhang, G. Fu, X. Yi, Q. Huang, F. Yang, W. Liang, A. Zheng, J. Jiang, Remarkable performance of selective catalytic reduction of NO<sub>x</sub> by ammonia over copper-exchanged SSZ-52 catalysts, Appl. Catal. B 283 (2021) 119641–119650.
- [33] D. Wang, L. Zhang, K. Kamasamudram, W.S. Epling, In Situ-DRIFTS study of selective catalytic reduction of NO<sub>x</sub> by NH<sub>3</sub> over Cu-Exchanged SAPO-34, ACS Catal. 3 (2013) 871–881.
- [34] L. Xie, F. Liu, K. Liu, X. Shi, H. He, Inhibitory effect of NO<sub>2</sub> on the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> over one-pot-synthesized Cu–SSZ-13 catalyst, Catal. Sci. Technol. 4 (2014) 1104–1110.
- [35] H. Zhu, J.H. Kwak, C.H.F. Peden, J. Szanyi, In situ DRIFTS-MS studies on the oxidation of adsorbed NH<sub>3</sub> by NO<sub>x</sub> over a Cu-SSZ-13 zeolite, Catal. Today 205 (2013) 16–23.
- [36] Y. Zhang, Y. Peng, K. Li, S. Liu, J. Chen, J. Li, F. Gao, C.H.F. Peden, Using transient FTIR spectroscopy to probe active sites and reaction intermediates for selective catalytic reduction of NO on Cu/SSZ-13 catalysts, ACS Catal. 9 (2019) 6137–6145.
- [37] Y. Ma, S. Cheng, X. Wu, Y. Shi, L. Cao, L. Liu, R. Ran, Z. Si, J. Liu, D. Weng, Lowtemperature solid-state ion-exchange method for preparing Cu-SSZ-13 selective catalytic reduction catalyst, ACS Catal. 9 (2019) 6962–6973.
- [38] D. Meng, Q. Xu, Y. Jiao, Y. Guo, Y. Guo, L. Wang, G. Lu, W. Zhan, Spinel structured Co<sub>d</sub>Mn<sub>b</sub>O<sub>x</sub> mixed oxide catalyst for the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, A Appl. Catal. B 221 (2018) 652–663.
- [39] Q. Li, M. Meng, Z.Q. Zou, X.G. Li, Y.Q. Zha, Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts, J. Hazard. Mater. 161 (2009) 366–372.
- [40] N. Zhu, Y. Shan, W. Shan, Y. Sun, K. Liu, Y. Zhang, H. He, Distinct NO<sub>2</sub> effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, Environ. Sci. Technol. 54 (2020) 15499–15506.
- [41] J. Wang, Y. Huang, T. Yu, S. Zhu, M. Shen, W. Li, J. Wang, The migration of Cu species over Cu–SAPO-34 and its effect on NH<sub>3</sub> oxidation at high temperature, Catal. Sci. Technol. 4 (2014) 3004–3012.
- [42] N.H. Ahn, T. Ryu, Y. Kang, H. Kim, J. Shin, I.-S. Nam, S.B. Hong, The origin of an unexpected increase in NH<sub>3</sub>–SCR activity of aged Cu-LTA catalysts, ACS Catal. 7 (2017) 6781–6785.

#### J. Du et al.

#### Applied Catalysis B: Environmental 294 (2021) 120237

- [43] B. Pereda-Ayo, U. De La Torre, M.J. Illán-Gómez, A. Bueno-López, J.R. González-Velasco, Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NO<sub>x</sub> with NH<sub>3</sub>, Appl. Catal. B 147 (2014) 420–428.
- [44] C. Paolucci, I. Khurana, A.A. Parekh, A.J. Shih, H. Li, J.R.D. Iorio, J.D. Albarracin-Caballero, A. Yezerets, J.T. Miller, W.N. Delgass, F.H. Ribeiro, W.F. Schneider, R. Gounder, Dynamic multinuclear sites formed by mobilized copper ions in NO<sub>x</sub> selective catalytic reduction, Science 357 (2017) 858–903.
- [45] C. Paolucci, A.A. Parekh, I. Khurana, J.R. Di Iorio, H. Li, J.D.A. Caballero, A. J. Shih, T. Anggara, W.N. Delgass, J.T. Miller, F.H. Ribeiro, R. Gounder, W. F. Schneider, Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites, J. Am. Chem. Soc. 138 (2016) 6028–6048.
- [46] P. Chen, A. Khetan, M. Jabłońska, J. Simböck, M. Muhler, R. Palkovits, H. Pitsch, U. Simon, Local dynamics of copper active sites in zeolite catalysts for selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub>, Appl. Catal. B 237 (2018) 263–272.

- [47] X. Liu, X. Wu, D. Weng, Z. Si, R. Ran, Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging, Catal. Today 281 (2017) 596–604.
- [48] G. Yang, J. Ran, X. Du, X. Wang, Y. Chen, L. Zhang, Different copper species as active sites for NH<sub>3</sub>-SCR reaction over Cu-SAPO-34 catalyst and reaction pathways: a periodic DFT study, Microporous Mesoporous Mater. 266 (2018) 223–231.
- [49] A.R. Fahami, T. Günter, D.E. Doronkin, M. Casapu, D. Zengel, T.H. Vuong, M. Simon, F. Breher, A.V. Kucherov, A. Brückner, J.D. Grunwaldt, The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NO<sub>x</sub> conversion profile during NH<sub>3</sub>-SCR, React. Chem. Eng. 4 (2019) 1000–1018.
- [50] A. Wang, Y. Chen, E.D. Walter, N.M. Washton, D. Mei, T. Varga, Y. Wang, J. Szanyi, Y. Wang, C.H.F. Peden, F. Gao, Unraveling the mysterious failure of Cu/SAPO-34 selective catalytic reduction catalysts, Nat. Commun. 10 (2019) 1137–1146.