

pubs.acs.org/acscatalysis

Unraveling the Mechanism of Ammonia Selective Catalytic Oxidation on Ag/Al₂O₃ Catalysts by Operando Spectroscopy

Guangyan Xu, Yu Zhang, Jingguo Lin, Yibao Wang, Xiaoyan Shi, Yunbo Yu, and Hong He*

ACCESS	III Metrics & More	E Article Recommendations	s Supporting Information

ABSTRACT: Ammonia leakage from the aftertreatment of diesel vehicles arouses serious environmental concerns, thus demanding a high-efficiency ammonia elimination catalyst. In the present work, the mechanism of ammonia selective catalytic oxidation (NH₃-SCO) on Ag/Al₂O₃ catalysts was investigated by operando spectroscopy (DRIFTS-MS and DR-UV–vis). Characterization results show that silver cations are predominant on Ag/Al₂O₃ samples with a low silver loading, whereas many silver nanoparticles are present on 10 wt % Ag/Al₂O₃. Operando DR-UV–vis analysis confirms that silver nanoparticles are the active sites for NH₃ oxidation, while silver cations are inert in this reaction. During NH₃ oxidation, oxygen activation on the silver nanoparticles induces the oxidation of metallic silver, whereas NH₃

dehydrogenation, in turn, reduces the oxidized silver species. Notably, the NH_3 -SCO reaction on 10 wt % Ag/Al_2O_3 could be divided into three regions: the light-off region, high-efficiency region, and high-temperature region. The reaction pathway of NH_3 oxidation is nearly related to oxygen activation on the silver nanoparticles; that is, a slow activation rate results in the generation of N_2O , whereas rapid activation induces the quick dehydrogenation of NH_3 to produce NO. Instead, appropriate rates for O_2 activation and NH_3 dehydrogenation are essential for N_2 formation during NH_3 oxidation.

KEYWORDS: ammonia, selective catalytic oxidation, Ag/Al₂O₃, operando DRIFTS-MS, operando DR-UV-vis

1. INTRODUCTION

Ammonia (NH_3) plays an essential role in industrial nitrogen chemistry, while its emission poses a great challenge to environmental protection.¹ In particular, ammonia is widely used as a reductant for the selective catalytic reduction (NH_3-SCR) of nitric oxides (NOx) emitted from heavy-duty diesel vehicles.² However, NH₃ leakage in aftertreatment systems has gradually increased due to the increase in urea injection to meet stricter NOx emission regulations.³ As a result, NH₃ leakage has recently been regulated in the new diesel vehicle emission regulations. There are several techniques for NH₃ abatement, including absorption, adsorption, catalytic combustion, catalytic decomposition, and thermal catalytic oxidation.⁴ Among these, selective catalytic oxidation of NH₃ (NH₃-SCO) to N₂ and H₂O is an efficient technology for NH₃ abatement in diesel vehicles.⁵

The NH₃-SCO technique for diesel vehicles needs to completely oxidize NH₃ to yield harmless N₂ and H₂O at a low temperature below 300 °C without the regeneration of undesirable NO*x*. Until now, three types of materials have been investigated in the NH₃-SCO reaction: (i) noble metal-based catalysts (Pt, Pd, Rh, Ir, Ru, Au, and Ag),^{6–13} (ii) transition metal oxide-based catalysts (CuO, Fe₃O₄, Co₃O₄, NiO, and V₂O₅),^{14–19} and (iii) modified zeolite catalysts (ZSM-5, mordenite, Y, and β).^{20–24} Noble metal-based catalysts possess high efficiency for NH₃ oxidation at low

temperatures below 300 °C, whereas they suffer from poor N₂ selectivity and high cost.⁵ Although transition metal oxidebased catalysts and modified zeolite catalysts show better N₂ selectivity in the NH₃-SCO reaction, they are insufficient for NH₃ oxidation at low temperatures. In contrast, aluminasupported silver (Ag/Al₂O₃) has proven to be a suitable NH₃ abatement catalyst due to its excellent low-temperature activity, N₂ selectivity, and low cost compared with other noble metals.^{25–28}

There remain some debates on the mechanism and active sites of NH_3 -SCO over Ag/Al_2O_3 , which hinder the design and improvement of silver catalysts from meeting the stricter regulation on ammonia leakage. Hitherto, three mechanisms have been proposed for the NH_3 -SCO reaction: (i) the imide mechanism, in which imide (-NH) and nitrosyl (HNO) intermediates are produced,²⁹⁻³¹ (ii) the hydrazine mechanism, involving hydrazine (N_2H_4) as an intermediate,^{18,32-34} and (iii) the internal selective catalytic reduction mechanism (i-SCR) that contains two steps of NH_3 oxidation to yield

Received:March 6, 2021Revised:April 8, 2021

NOx and NH₃-SCR.^{11,17,23,24,32,35,36} Gang et al.^{25,26} proposed that NH₃ oxidation over supported silver catalysts obeyed the i-SCR mechanism and that the low-temperature activity was dependent on the dissociative or nondissociative adsorption of O₂. Zhang et al.^{27,28} suggested that NH₃-SCO over Ag/Al₂O₃ catalysts obeyed the imide mechanism at low temperatures below 140 °C, while following the i-SCR mechanism at high temperatures above 140 °C. Recently, Wang et al.^{37,3} proposed a "N2⁻ mechanism" for NH3 oxidation over nanosized Ag/Al₂O₃ catalysts in which NH₃ is dehydrogenated to form amide and imide, followed by the formation of $N_2^$ species as well as gaseous N2. Despite extensive research, there remains a debate on the elementary reaction steps and the active sites in the NH₃-SCO reaction over Ag/Al₂O₃ catalysts. One of the crucial reasons is that the previous works usually investigated the reaction mechanism by ex situ technologies, which made drawing definite conclusions about the active sites and reaction mechanism of NH₃-SCO difficult.

The above problems highlight the importance of operando technologies to investigate catalysts and reaction mechanisms under realistic working conditions.^{9,39} In the present work, high-efficiency Ag/Al₂O₃ catalysts were synthesized and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) spectrophotometry, and highresolution transmission electron microscopy (HR-TEM). Besides, the reaction mechanism of NH₃ oxidation on Ag/ Al₂O₃ catalysts was investigated by operando diffuse reflectance infrared Fourier transform spectroscopy combined with mass spectrometry (DRIFTS-MS) and diffuse reflectance UV-vis (DR-UV-vis) spectrophotometry. This study provides deep insights into the reaction mechanism of NH₃-SCO and offers some advice for the design of high-efficiency NH₃-SCO catalysts.

2. EXPERIMENTAL SECTION

Ag/Al₂O₃ catalysts with 1 and 10 wt % silver loadings were prepared using an impregnation method.^{40,41} Boehmite (SASOL, SB1) was added into deionized water with stirring to form a suspension. Silver nitrate (AR) was dissolved in deionized water and then added into the above suspension with stirring. Afterward, the excess water was evaporated, and the samples were dried in an oven at 100 °C for 12 h. Finally, these samples were calcined in a muffle furnace at 600 °C for 3 h. Al₂O₃ was prepared by the same procedure without impregnating with silver nitrate.

BET analysis was performed on a physical adsorption instrument (Micromeritics, ASAP 2020).⁴² XRD measurement was carried out on a D8-ADVANCE (Bruker) diffractometer using Cu K α radiation (40 kV, 40 mA). XPS analysis was performed on an X-ray photoelectron spectrometer (AXIS Supra, Kratos Analytical Ltd.). The spectra were collected at a step size of 0.10 eV, using C 1s (284.8 eV) for calibration. H₂ temperature-programmed reduction (H₂-TPR) was performed on a Micromeritics AutoChem 2920 II chemisorption analyzer. 41 The sample (50 mg) was pretreated in 10% $\mathrm{O_2}/$ He at 300 °C for 30 min and cooled down to 20 °C in Ar, followed by TPR in 10% H_2/Ar (50 mL/min) at a rate of 10 °C/min. UV-vis analysis was conducted on a UV-vis spectrophotometer (LAMBDA 650, PerkinElmer).⁴⁰ The spectra were recorded at a resolution of 1 nm using Al₂O₃ as the reference. The catalyst's morphology was investigated by a

high-resolution transmission electron microscope (2100 Plus, JEOL).

The catalytic tests were conducted in a fixed-bed reactor (i.d. 7 mm).^{40,43} The gas composition was composed of 500 ppm NH₃, 5% O₂, 5% H₂O (when added), and 5% CO₂ (when added) in N₂ balance (500 mL/min). A 200 mg sample (40–60 mesh) was employed, corresponding to a gas hourly space velocity of 110,000 h⁻¹. The reactants and products (NH₃, N₂O, and NO) were monitored by a Fourier transform infrared (FT-IR) spectrometer (Nicolet iS 10). The formation of NO₂ was negligible (<3 ppm). The NH₃ conversion and N₂ formation were calculated according to eqs 1 and 2, respectively.

$$NH_{3} \text{ conversion } (\%) = \frac{[NH_{3}]_{in} - [NH_{3}]_{out}}{[NH_{3}]_{in}} \times 100\%$$
(1)

$$N_{2} \text{ formation (ppm)} = \frac{[NH_{3}]_{in} - [NH_{3}]_{out} - 2 \times [N_{2}O] - [NO]}{2}$$
(2)

Kinetic studies were conducted in the above reactor. The NH₃ conversion was controlled below 30% via varying the weight of the sample. Internal and external diffusion effects had been eliminated according to our previous works.^{37,40} The concentrations of NH₃ and O₂ were varied from 100 to 600 ppm and from 1 to 10%, respectively. Turnover frequency was calculated according to eq 3, where $F_{\rm NH_3}$, $X_{\rm NH_3}$, W, L, and $M_{\rm Ag}$ represent the flow rate (mol/s), NH₃ conversion (%), the sample weight (g), silver loading (%), and silver molar mass (g/mol), respectively. $D_{\rm Ag}$ represents silver dispersion, which was calculated according to $D_{\rm Ag}$ (%) = 1.34/d (nm) by assuming that the silver species were present as spherical crystallites, whereas d is the average silver particle size obtained from the HR-TEM images⁴⁴

$$\text{TOF}(s^{-1}) = \frac{F_{\text{NH}_3} \times X_{\text{NH}_3}}{W \times L \times D_{\text{Ag}} \div M_{\text{Ag}}}$$
(3)

Operando DRIFTS-MS experiments were performed by FT-IR spectroscopy (Nicolet iS 50) and online MS (InProcess Instruments, GAM 200).^{41,45} A powder sample (~60 mg) was placed into a Harrick Scientific cell. The typical gas composition was composed of 500 ppm NH₃ and 5% O₂ in Ar balance (100 mL/min, 75,000 h⁻¹). The spectra were recorded with an accumulation of 100 scans (4 cm⁻¹) and represented in Kubelka–Munk units. The products, including N₂, N₂O, NO, and H₂O, were monitored by online MS. Before each experiment, the sample was pretreated in 5% O₂/Ar at 450 °C for 1 h.

Operando DR-UV-vis experiments were conducted on the above UV-vis spectrophotometer equipped with a Harrick Scientific cell. Except for using N_2 balance, the settings for operando DR-UV-vis experiments were the same as those for the operando DRIFTS experiments. The spectra were collected from 800 to 200 nm at a rate of 1 nm/s with 5 nm resolution and represented in Kubelka-Munk units. The DR-UV-vis data were obtained by continuously measuring the absorbance at 450 nm at 1 point/s time resolution.

Figure 1. XPS spectra (A), H₂-TPR profiles (B), and UV-vis spectra (C) of Ag/Al₂O₃ catalysts and HR-TEM image of 10 wt % Ag/Al₂O₃ (D).

Figure 2. NH₃ conversion on Ag/Al₂O₃ catalysts in NH₃-SCO (A) and product concentrations on 10 wt % Ag/Al₂O₃ (B).

3. RESULTS

3.1. Characterization. Various techniques were employed to investigate the surface and structural properties of the Ag/ Al_2O_3 catalysts (Figure 1). The XRD patterns showed that only the γ -Al₂O₃ crystal phase was observed for the Al₂O₃ and Ag/Al₂O₃ samples (Figure S1).⁴² In contrast, no silver phase was observed on the Ag/Al₂O₃ samples, indicating the good dispersion or amorphous nature of the silver species.²⁷ Pure Al_2O_3 had a specific surface area of 203.3 m²/g, while the impregnation of silver species did not significantly affect the surface and pore structure of Ag/Al₂O₃ samples (Table S1). The slight increase in the specific surface area of 1 wt % Ag/ Al_2O_3 (225.4 m²/g) might be due to the influence of silver species on the pore structure of the Al₂O₃ support, which has also been observed in a previous work.⁴³ XPS analysis showed that the surface concentrations of silver species on the 1 wt % Ag/Al₂O₃ and 10 wt % Ag/Al₂O₃ were 2.36 and 12.5%, respectively, which were only slightly higher than the overall

silver contents (Figure 1A). H₂-TPR analysis showed that 1 wt % Ag/Al₂O₃ had a single H₂ consumption peak (~265 °C), attributed to the reduction of dispersed Ag⁺ cations (Figure 1B).⁴¹ The H₂ consumption on this sample was 0.042 mmol/g, which is approximately equal to the theoretical value of 0.046 mmol/g (Ag/H₂ = 1:2), indicating that the silver species were mainly present in the oxidized state. Instead, there were three peaks observed on 10 wt % Ag/Al₂O₃, attributed to the reduction of surface oxygen on Ag (78 °C), Ag₂O nanoparticles (150 °C), and dispersed Ag⁺ cations (265 °C).^{26,37} The H₂ consumption on the 10 wt % Ag/Al₂O₃ was 0.205 mmol/g, which is significantly lower than the theoretical value (0.46 mmol/g), indicating that a certain amount of silver species was in the metallic state and could not be reduced by H₂.

In order to eliminate the interference by Al_2O_3 absorbance, the Al_2O_3 UV-vis spectrum was subtracted from the spectra of the Ag/Al_2O_3 catalysts (Figure 1C). Four absorbance peaks

Figure 3. Reaction rate of NH_3 conversion as a function of NH_3 (A) and O_2 (B) concentrations over 10 wt % Ag/Al_2O_3 at different temperatures. Typical feed composition: 500 ppm NH_3 and 5% O_2 in N_2 balance.

Figure 4. NH₃ adsorption on Al₂O₃ and Ag/Al₂O₃ catalysts at 100 °C (A) and 10 wt % Ag/Al₂O₃ at different temperatures (B).

were observed for the Ag/Al_2O_3 samples and were attributed to the dispersed silver cations (220 nm), partially oxidized silver clusters (290 nm), metallic silver clusters (350 nm), and metallic silver nanoparticles (450 nm).^{27,46–48} On Ag/Al_2O_3 with a low silver loading (1 wt %), dispersed silver cations dominated the surface and accounted for about 70% of the total silver species, accompanied by a small amount of silver clusters. Instead, in addition to silver cations, there were a large number of silver clusters and nanoparticles present on 10 wt % Ag/Al_2O_3 , resulting in a strong absorption in the visible light region. HR-TEM images further confirmed that silver nanoparticles with an average diameter of 11.7 nm were present on the 10 wt % Ag/Al_2O_3 catalyst, whereas silver cations were hardly observed due to the limitations of the HR-TEM analysis (Figures 1D and S2).

3.2. Catalytic Activity. As shown in Figure 2, Al_2O_3 was entirely inactive for NH_3 oxidation with a maximum conversion of 10% at 450 °C, while impregnation with a low silver content hardly improved the catalytic performance of 1 wt % Ag/Al_2O_3 . In contrast, the 10 wt % Ag/Al_2O_3 catalyst exhibited a high efficiency for NH_3 oxidation, with 96.6% NH_3 conversion at 225 °C. Notably, the NH_3 -SCO reaction over 10 wt % Ag/Al_2O_3 could be divided into three reaction regions, consistent with a similar phenomenon observed in NH_3 oxidation on Pd/Al_2O_3 catalysts.⁹ In the light-off region (150–225 °C), NH_3 oxidation started occurring, and the formation of N_2 and N_2O was rapidly increased as the temperature rose; in the high-efficiency region (225–350 °C),

the generation of N₂ was highly efficient and increased gradually, accompanied by a gradual decline in N₂O production; in the high-temperature region (350–450 °C), NO formation gradually increased at the expense of decreased N₂ generation. Moreover, the heating/cooling cycle test with the coexistence of CO₂ and H₂O shows that the stability of the Ag/Al₂O₃ catalysts should be further improved (Figure S3).

To further investigate the kinetics of NH₃-SCO over 10 wt % Ag/Al_2O_3 , the conversion rate of NH_3 as a function of NH_3 and O₂ concentrations was measured at different temperatures (Figure 3). In the light-off region (200 $^{\circ}$ C), the reaction order of NH₃ was 0.08, indicating that NH₃ adsorbed on the catalyst surface before its further reaction. In the high-efficiency region, however, the reaction order of NH₃ gradually increased to 0.44 and 0.68 at 250 and 300 °C, respectively. In contrast, the reaction order of O₂ gradually decreased from 0.58 to 0.46 and 0.25 as the temperature increased from 200 to 250 and 300 $^{\circ}$ C, respectively, revealing that more gaseous O₂ was activated on the catalyst surface to participate in the reaction. In the hightemperature region (400 $^{\circ}$ C), the reaction order of NH₃ remained stable (0.62), whereas the order of O₂ increased to 0.37 instead. Moreover, increasing the reaction temperature from 200 to 300 °C significantly increased the reaction rate of NH₃ oxidation, whereas a further increase to 400 °C did not further enhance the NH₃ conversion. By the way, changes in NH_3 and O_2 concentrations only slightly affected the N_2 selectivity in the kinetic study (not shown).

Figure 5. TPSR experiment of NH_3 -SCO reaction on 10 wt % Ag/Al_2O_3 : surface intermediates (A) and gaseous products (B). Feed composition: 500 ppm NH_3 and 5% O_2 in Ar balance.

Figure 6. Reactivity of adsorbed NH₃ species toward O₂ over 10 wt % Ag/Al_2O_3 at 200 (A), 225 (B), 250 (C), and 275 °C (D) and the surface intermediates (E) and gaseous products (F) at different temperatures. The 10 wt % Ag/Al_2O_3 catalyst was pre-exposed to NH₃ for 60 min and then exposed to NH₃ + O₂ for 30 min. Feed composition: 500 ppm NH₃ and 5% O₂ in Ar balance.

Figure 7. Operando DR-UV-vis spectra of 10 wt % Ag/Al_2O_3 in a flow of O_2/N_2 (A) and $NH_3/O_2/N_2$ (B-D) at different temperatures. Feed composition: 500 ppm NH_3 and 5% O_2 in N_2 balance.

3.3. Operando DRIFTS-MS Experiments. Operando DRIFTS-MS experiments were conducted to investigate the surface intermediates and gaseous products in NH₃ oxidation over Ag/Al₂O₃ catalysts. Figure 4 shows the DRIFTS spectra of NH₃ adsorption on the Al_2O_3 and Ag/Al_2O_3 catalysts at different temperatures. Several peaks were observed on Al₂O₃, which were attributed to NH₃ adsorbed on different acid sites. Specially, the band at 1615 cm⁻¹ was attributed to the asymmetric stretch of NH₃ adsorbed on Lewis acid sites, while the peaks at 1265 and 1212 cm⁻¹ were assigned to the symmetric stretch of the above adsorbed NH₃. Instead, the peaks at 1690 and 1475 cm⁻¹ were due to the asymmetric and symmetric deformation modes of NH₃ coordinated on Brønsted acid sites, respectively.^{28,49} Impregnation with a small amount of silver species slightly increased the number of Brønsted acid sites on 1 wt % Ag/Al₂O₃, possibly due to the formation of hydroxyl groups connected to the dispersed silver cations. By contrast, the Brønsted acid sites vanished on 10 wt % Ag/Al₂O₃, accompanied by a significant increase in the Lewis acid sites. It was speculated that high-density silver species covered the surface of Al₂O₃, and the metallic silver nanoparticles served as new Lewis acid sites for NH₃ adsorption. NH₃ adsorbed on the Lewis acid sites on 10 wt % Ag/Al₂O₃ was gradually desorbed as the temperature rose above 200 °C (Figure 4B), whereas it was less temperaturesensitive on the Al_2O_3 catalyst (Figure S4).

A temperature-programmed surface reaction (TPSR) experiment for the NH₃-SCO reaction was conducted on 10 wt % Ag/Al₂O₃ while increasing the temperature from 100 to 450 °C at a rate of 2 °C/min (Figure 5). Before ramping up, the sample was exposed to NH₃/O₂ at 100 °C for 90 min to reach a stable state. At 100 °C, a large amount of NH₃ adsorbed on

the Lewis acid sites, whereas the formation of N₂ and N₂O was negligible (not shown). As the temperature increased from 150 to 250 °C, the amount of adsorbed NH₃ gradually decreased, accompanied by the rapid formation of N_2 and N_2O . Meanwhile, two weak peaks at 2237 and 2210 \mbox{cm}^{-1} were observed (Figure S5) and were attributed to the adsorption of N_2O (Figure S6). In addition, a new peak at 2170 cm⁻¹ was found, which has rarely been reported on Ag/Al₂O₃ catalysts in previous literature. As this peak gradually strengthened as the temperature increased from 175 to 225 °C, which was consistent with the light-off of NH₃ oxidation, it should be due to the intermediates of NH₂ oxidation. Recently, a similar peak was also observed on the supported Pd catalysts during NH₃ oxidation and was assigned to the asymmetric stretch of dinitrogen species originating from the dissociative adsorption of NH₃.⁹ Hence, the band at 2170 cm⁻¹ was attributed to the N=N stretch of dinitrogen species (possibly NH=NH species), which served as the precursor for the formation of N₂ and N₂O.

As the temperature further rose from 250 to 350 °C, NH₃ adsorption rapidly decreased, accompanied by the gradual formation of nitrates (1545 and 1250 cm⁻¹).²⁸ At the same time, N₂ production continuously increased and remained at a high level, whereas N₂O formation gradually decreased. In the high-temperature region (above 350 °C), only nitrate species were observed on the catalyst surface, and the N₂ generation slightly decreased as the temperature further rose. At 400 °C, the removal of NH₃ from the reaction gas (NH₃ + O₂) did not affect nitrate adsorption, indicating that nitrates were inert species in this reaction (Figure S7). Because sufficient NO could be formed only at temperatures above 400 °C (Figure 2), MS did not detect the generation of NO in the TPSR

Figure 8. Operando DR-UV–vis spectra of 1 wt % Ag/Al₂O₃ (A) and 10 wt % Ag/Al₂O₃ (B) under different conditions at 300 $^{\circ}$ C. Feed composition: 500 ppm NH₃ and 5% O₂ in N₂ balance.

experiment. The slightly higher light-off temperature (about 33 $^{\circ}$ C) for NH₃ conversion in the DRIFTS-MS experiment compared to the catalytic test (Figure 2) could be attributed to the differences in the experimental systems.

Moreover, the reactivity of adsorbed NH₃ was measured on the 10 wt % Ag/Al2O3 catalyst at different temperatures (Figure 6). At 200 °C, the adsorbed NH₃ species hardly reacted with O_2 to form the surface intermediate (2170 cm⁻¹), not to mention the gaseous products of N₂ and N₂O. This indicated that O2 activation and NH3 dehydrogenation to form dinitrogen species were the limiting steps at this temperature. Incidentally, the formation of trace amounts of dinitrogen species and adsorbed N₂O during NH₃ adsorption could be due to the reaction between the adsorbed NH₃ species and chemisorbed oxygen species on the Ag/Al₂O₃ surface. At 225 °C, NH₃ adsorbed on the Lewis acid sites (1615, 1264, and 1212 cm⁻¹) gradually reacted with gaseous O₂ to produce dinitrogen species and adsorbed N2O, accompanied by the formation of gaseous N₂ and N₂O. The formation of a high amount of dinitrogen species and a low concentration of gaseous N2 revealed that further reaction of dinitrogen species to produce N_2 might be the limiting step at this temperature. Besides, the peak for molecular H_2O (1600–1650 cm⁻¹) originating from the SCO reaction would interfere with the peak (1615 cm⁻¹) due to the Lewis acid site. As the temperature further rose to 250 °C, notably, the adsorbed NH₃ species' reactivity was remarkably enhanced, and the N₂ generation was more than 450 ppm in the first 3 min. At 275 $^{\circ}$ C, the adsorbed NH₃ was much more reactive toward gaseous O2, and the peak for N2 formation was extraordinarily sharp and intense (~1200 ppm). Meanwhile, the concentration of surface dinitrogen species was negligible in the steady NH₃-SCO reaction, revealing that its subsequent decomposition was fast at high temperatures. In order to better identify the intermediates of NH₃ oxidation, a spectrum was obtained by subtracting the spectrum in NH₃ from the spectrum in NH₃/ O_2 (Figure S8). Two new peaks (1550 and 1455 cm⁻¹) were observed and were attributed to amide $(-NH_2)$ and hydrazine $(NH_2 - NH_2)$, respectively.¹⁸

3.4. Operando DR-UV–vis **Experiments.** In order to study the dynamic change of silver species during the NH₃-SCO reaction, an operando DR-UV–vis experiment was conducted on the 10 wt % Ag/Al_2O_3 catalyst at different temperatures (Figure 7). To eliminate the interference by the support, Al_2O_3 was used as the reference. Incidentally, the differences between the ex situ UV–vis spectra and operando

DR-UV-vis spectra could be attributed to the different experimental modes. In the flow of O_2/N_2 (Figure 7A), as the temperature gradually increased from 100 to 400 $^\circ C$ (2 °C/min), the number of metallic silver clusters (350 nm) and metallic silver nanoparticles (450 nm) gradually decreased, indicating that metallic silver was gradually oxidized at high temperature. Instead, during the TPSR experiment of NH₃-SCO reaction, the metallic silver species exhibited different characteristics with the rising temperature. As the temperature increased from 100 to 200 °C (Figure 7B), the amount of metallic silver species gradually decreased, consistent with that observed in the absence of NH₃. When the temperature further rose to 300 °C (Figure 7C), it should be highlighted that a broad absorbance appeared in the visible region (400-800 nm) and gradually strengthened, which could be attributed to the surface plasmon absorption of silver nanoparticles.⁵⁰ In contrast, the above absorbance gradually weakened as the temperature further increased from 300 to 400 °C (Figure 7D). The absence of surface plasmon absorption on 10 wt % Ag/Al_2O_3 in O_2/N_2 (Figure 7A) may be due to the adsorption of O₂ on the surface of silver nanoparticles. Therefore, NH₃ significantly changed the valence state of silver species in the NH₃-SCO reaction over the Ag/Al₂O₃ catalyst.

In order to clarify the roles of different silver species in the NH₃-SCO reaction, a step response experiment was conducted on 1 wt % Ag/Al₂O₃ and 10 wt % Ag/Al₂O₃ (Figure 8). Before each experiment, these samples were pretreated in O_2/N_2 at 400 °C for 1 h and then cooled down to 300 °C to collect a reference spectrum. Afterward, the samples were sequentially exposed to O_2/N_2 , NH₃/ O_2/N_2 , and O_2/N_2 for 30 min each. On 1 wt % Ag/Al₂O₃, the gas composition changes hardly affected the silver species' state. In contrast, on 10 wt % Ag/Al₂O₃, the introduction of NH₃ significantly changed the state of silver species, which exhibited intense absorbance in the visible region, whereas this absorbance vanished after the removal of NH₃. Therefore, it was proposed that silver nanoparticles were the active sites for NH₃ oxidation over 10 wt % Ag/Al₂O₃.

Furthermore, a step-response experiment was conducted on the 10 wt % Ag/Al_2O_3 catalyst to investigate the dynamic changes of metallic silver nanoparticles during the NH₃-SCO reaction (Figure 9). The sample was pretreated and set to the desired temperature to measure a reference (absorbance at 450 nm, which refers to the metallic silver nanoparticle). It was then sequentially exposed to NH₃/O₂/N₂, O₂/N₂, NH₃/N₂, and O₂/N₂ for 1 h each. At 200 °C, the introduction of NH₃

Figure 9. Dynamic change of metallic silver nanoparticles on the 10 wt % Ag/Al_2O_3 catalyst during the switching of the gas composition. Feed composition: 500 ppm NH₃ and 5% O₂ in N₂ balance.

slowly reduced the silver species and increased the number of metallic silver nanoparticles, regardless of the presence of O2. By contrast, O2 could not oxidize the above metallic silver nanoparticles even after the removal of NH₃. At the higher temperature of 300 °C, while O2 could efficiently oxidize the metallic silver nanoparticles, the silver species were still reduced gradually in the presence of NH₃, indicating that the reduction of silver species was faster than their oxidation. As the temperature further rose to 400 °C, the silver species were mainly present in an oxidized state, regardless of the presence of NH₃. At this temperature, NH₃ exhibited a high ability to reduce the silver species, whereas O₂ was a much more potent oxidant. In conclusion, the reduction of silver species was faster than its oxidation at a temperature below 300 °C, while the opposite situation occurred as the temperature further rose to 400 °C.

4. DISCUSSION

As mentioned above, three mechanisms have been proposed for the NH₃-SCO reaction: (i) the imide mechanism (eqs $(4-7)^{29-31}$ (ii) the hydrazine mechanism (eqs 8 and 9), $(18,32-34)^{18,32-34}$ and (iii) the i-SCR mechanism. $(10,11,17,23,35)^{10,11}$ Generally, a consensus has been reached that the NH₃-SCO reaction starts with the adsorption of NH₃, which is further activated by active oxygen species, and then abstracts an H atom to produce amide $(-NH_2)$. During this process, the formation of active oxygen species, which originate from the dissociative or nondissociative adsorption of oxygen on the catalyst, is critical for the further activation of NH₃. It was reported that four types of oxygen species could be observed on the Ag/Al₂O₃ catalysts, including adsorbed molecular oxygen, adsorbed atomic oxygen, subsurface oxygen, and bulk dissolved oxygen.²⁶ Notably, the activation of oxygen is highly dependent on the physical and chemical properties of the active metal on the catalyst.

$$NH_3 + [O] \rightarrow -NH_2 + [OH] \tag{4}$$

$$-\mathrm{NH}_2 + [\mathrm{O}] \to -\mathrm{NH} + [\mathrm{OH}] \tag{5}$$

$$-NH + [O] \rightarrow -HNO \tag{6}$$

$$-HNO + -NH \rightarrow N_2 + H_2O \tag{7}$$

$$-\mathrm{NH}_2 + -\mathrm{NH}_2 \to \mathrm{N}_2\mathrm{H}_4 \tag{8}$$

$$N_2H_4 + O_2 \to N_2 + 2H_2O$$
 (9)

UV-vis spectra showed that dispersed silver cations are predominant on 1 wt % Ag/Al₂O₃, whereas many silver nanoparticles are present on 10 wt % Ag/Al₂O₃. Moreover, the HR-TEM images further showed that the above silver nanoparticles had an average diameter of 11.7 nm, while the dispersed silver cations could not be observed due to the limitations of HR-TEM resolution. The absence of peaks of the silver phase in the XRD pattern might be due to the coexistence of metallic and oxidized silver species on 10 wt % Ag/Al₂O₃. More importantly, the operando DR-UV-vis experiment revealed that these metallic silver nanoparticles on 10 wt % Ag/Al₂O₃ gradually converted to oxidized silver nanoparticles as the temperature increased from ambient temperature to high temperature (400 °C). In other words, oxygen was gradually activated on the silver nanoparticles on the 10 wt % Ag/Al₂O₃ catalyst as the temperature rose.

During the NH₃-SCO reaction, neither Al₂O₃ nor 1 wt % Ag/Al₂O₃ was effective for the catalytic oxidation of NH₃, whereas the 10 wt % Ag/Al2O3 catalyst exhibited a high efficiency for NH₃ oxidation, with 96.6% conversion at 225 °C. Both Lewis acid sites and Brønsted acid sites exist on Al₂O₃, and impregnation with silver species significantly increases the number of Lewis acid sites on 10 wt % Ag/Al₂O₃, mainly attributed to the metallic silver nanoparticles. Notably, NH₃ adsorbed on these Lewis acid sites exhibited high reactivity toward O_2 to generate N_2 and N_2O (Figure 6). Moreover, the operando DR-UV-vis experiment revealed that silver nanoparticles showed dynamic changes in the NH₃-SCO reaction, whereas the silver cations were completely inactive (Figure 8). Based on the results of operando spectroscopy (DRIFTS-MS and DR-UV-vis), it is proposed that the NH₃-SCO reaction starts with the activation of adsorbed NH₃ by active oxygen species to dehydrogenate to form hydrazine species (NH₂-NH₂). Afterward, the hydrazine species further dehydrogenate to produce NH=NH species, which subsequently react with active oxygen species to yield N_2 and H_2O (eqs 10 and 11). In addition, the NH=NH species could also react with nondissociated $[O_2]$ to generate undesirable N₂O (eq 12).

$$NH_2 - NH_2 + [O] \rightarrow NH = NH + H_2O$$
(10)

$$NH = NH + [O] \rightarrow N_2 + H_2O \tag{11}$$

$$NH = NH + [O_2] \rightarrow N_2O + H_2O$$
(12)

Throughout the above procedures, silver species play an important role in the activation of oxygen, which is critical for the dehydrogenation of adsorbed NH₃. Specifically, oxygen activation on the silver nanoparticles induces the oxidation of metallic silver, whereas the dehydrogenation of adsorbed NH₃ transfers H atoms to the silver nanoparticles and thus reduces the oxidized silver species. The oxidation and reduction rates affect not only the valence state of silver nanoparticles but also the formation of surface intermediates and gaseous products during NH₃ oxidation. It should be highlighted that the NH₃ oxidation over 10 wt % Ag/Al₂O₃ could be divided into three regions: the light-off region where NH₃ oxidation gradually occurred and accelerated to produce both N₂ and N₂O; the high-efficiency region where the N₂ generation was highly efficient and N₂O formation decreased gradually; and the hightemperature region in which NO production gradually increased, accompanied by a slight decrease in N₂ formation. In the light-off region (150–225 °C), gaseous O_2 was slowly

activated on the silver nanoparticles, though the activation

gradually accelerated as the temperature increased (Figure 7A). As a result, the silver nanoparticles were mainly present in a metallic state at ambient temperature, whereas they were gradually oxidized at elevated temperatures. In this reaction region, it is proposed that both the nondissociative and dissociative adsorbed oxygen species ([O] and $[O_2]$) coexist on the surface of 10 wt % Ag/Al_2O_3 . At a specific temperature (200 °C), the adsorbed NH₃ could be slowly activated and dehydrogenated to reduce the silver nanoparticles, whereas these silver species were hardly reoxidized by O_2 even after the removal of NH_3 (Figure 9). The kinetic study showed that the reaction order of NH₃ at 200 °C was close to zero (0.08), indicating that NH₃ adsorbed on the catalyst surface before its further reaction. Instead, the reaction order of O₂ was 0.58 at 200 °C, revealing that the gaseous O₂ concentration remarkably influenced the reaction rate of NH₃ oxidation. Hence, it is proposed that the reoxidation of silver nanoparticles is the rate-determining step in this reaction region and that the reaction of NH=NH species with [O] and $[O_2]$ is responsible for the generation of N_2 and N_2O (eqs 11 and 12). Compared with other silver-containing catalysts,²⁶ the 10% Ag/Al2O3 catalyst in the present work exhibited lower N2 selectivity in low temperature regions due to the formation of $N_2O.$

In the high-efficiency region (225-350 °C), the silver nanoparticles on 10 wt % Ag/Al₂O₃ are mainly present in an oxidized state in O_2/N_2 , indicating that O_2 is well activated in this temperature range (Figure 7A). However, during the NH_3 -SCO reaction, the reduction of silver nanoparticles by NH₃ is significantly more potent than its further oxidation by O_{24} especially at temperatures below 300 °C (Figures 7C and 9). Instead, the oxidation of silver species is remarkably enhanced at temperatures above 300 °C, resulting in the gradual decrease of metallic silver species. The kinetic study showed that the reaction order of NH₃ gradually increased to 0.44 (250 °C) and 0.68 (300 $^{\circ}$ C), indicating that the adsorption of NH₃ was insufficient, and it also affected the reaction rate. In contrast, the reaction order of O_2 gradually decreased to 0.46 (250 °C) and 0.25 (300 °C), revealing that O2 was well activated and showed a minor influence on the overall reaction rate. Moreover, the DRIFTS-MS experiment showed that the surface reaction gradually accelerated as the temperature rose and was extremely fast at temperatures above 275 °C. Hence, in this reaction region, the rate-determining step gradually changed from the reoxidation of silver nanoparticles to the adsorption of NH₃ and its further dehydrogenation as temperature increased. Besides, as gaseous O2 could be rapidly dissociated to produce active [O] species, the formation of N_2O (eq 12) gradually decreased as the temperature rose.

$$-\mathrm{NH} + [\mathrm{O}] \to [\mathrm{N}] + [\mathrm{OH}] \tag{13}$$

$$[N] + [O] \to [NO] \tag{14}$$

In the high-temperature region (350-450 °C), the silver nanoparticles were present in a completely oxidized state in air. Although NH₃ showed a strong ability to reduce the silver nanoparticles, O₂ exhibited a more potent effect on the oxidation of silver species during the NH₃-SCO reaction. The rapid dehydrogenation of NH₃ possibly resulted in the formation of atomic [N] species, which directly reacted with the abundant [O] species to produce NO (eqs 13 and 14). Therefore, it is crucial to control the dehydrogenation rate of NH₃ to avoid the formation of undesirable NO. While some researchers advised that NO originates from the decomposition of nitrate species, in the present work, however, it was confirmed that nitrate species remain stable on the catalyst surface and serve as spectator species in this reaction (Figure S7). In summary, the reaction pathway of NH_3 -SCO over the Ag/Al₂O₃ catalysts is nearly related to the activation of oxygen on the silver nanoparticles, which further governs the subsequent formation of surface intermediates and gaseous products.

5. CONCLUSIONS

The reaction mechanism of NH₃-SCO over Ag/Al₂O₃ was investigated by operando DRIFTS-MS and DR-UV-vis experiments. Dispersed silver cations are predominant on the Ag/Al₂O₃ catalyst with a low silver loading, whereas many silver nanoparticles are present on 10 wt % Ag/Al₂O₃. Silver nanoparticles are the active sites for NH₃ oxidation, while silver cations exhibit little dynamic change during the NH3-SCO reaction. During NH₃ oxidation, oxygen activation on the silver nanoparticles induces the oxidation of metallic silver, whereas NH₃ dehydrogenation transfers H atoms to the silver nanoparticles and thus reduces the oxidized silver species. Notably, the NH₃-SCO reaction over 10 wt % Ag/Al₂O₃ could be divided into three reaction regions: the light-off region (150-225 °C) where the formation of both N_2 and N_2O rapidly increased; the high-efficiency region (225-350 °C) where N₂ formation was highly efficient and N₂O formation decreased gradually; and the high-temperature region (350-450 °C) in which NO production gradually increased, accompanied by a slight decrease in N₂ formation. The reaction pathway is nearly related to the activation of oxygen on the silver nanoparticles; that is, a slow activation rate resulted in the formation of N₂O, whereas a rapid dehydrogenation of NH₃ induced the generation of NO. Instead, appropriate rates for O₂ activation and NH₃ dehydrogenation are essential for N₂ formation during NH₃ oxidation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.1c01054.

BET surface area analysis results, XRD patterns, HR-TEM images, and DRIFTS spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Hong He – State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Email: honghe@rcees.ac.cn

Authors

- Guangyan Xu − State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; © orcid.org/0000-0002-4275-7517
- Yu Zhang State Key Laboratory of Engine Reliability, Weifang 261061, China

- **Jingguo Lin** State Key Laboratory of Engine Reliability, Weifang 261061, China
- Yibao Wang State Key Laboratory of Engine Reliability, Weifang 261061, China
- Xiaoyan Shi State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
- Yunbo Yu State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; orcid.org/0000-0003-2935-0955

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.1c01054

Author Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the National Key R&D Program of China (2017YFC0211101), the National Natural Science Foundation of China (21906171, 21673277, and 21637005), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23010200), and the Science Fund of State Key Laboratory of Engine Reliability (SKLER-201802).

REFERENCES

(1) Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.; Kanatzidis, M. G.; King, P.; Lancaster, K. M.; Lymar, S. V.; Pfromm, P.; Schneider, W. F.; Schrock, R. R. Beyond fossil fueldriven nitrogen transformations. *Science* **2018**, *360*, No. eaar6611.

(2) Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. *Chem. Soc. Rev.* 2015, 44, 7371–7405.

(3) Lambert, C. K. Current state of the art and future needs for automotive exhaust catalysis. *Nat. Catal.* 2019, 2, 554–557.

(4) Busca, G.; Pistarino, C. Abatement of ammonia and amines from waste gases: a summary. J. Loss Prev. Process Ind. 2003, 16, 157–163.

(5) Chmielarz, L.; Jabłońska, M. Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. *RSC Adv.* 2015, *5*, 43408–43431.

(6) Svintsitskiy, D. A.; Kibis, L. S.; Stadnichenko, A. I.; Slavinskaya, E. M.; Romanenko, A. V.; Fedorova, E. A.; Stonkus, O. A.; Doronkin, D. E.; Marchuk, V.; Zimina, A.; Casapu, M.; Grunwaldt, J. D.; Boronin, A. I. Insight into the nature of active species of Pt/Al_2O_3 catalysts for low temperature NH_3 oxidation. *Chemcatchem* **2020**, *12*, 867–880.

(7) Ma, H.; Schneider, W. F. Structure- and temperaturedependence of Pt-catalyzed ammonia oxidation rates and selectivities. *ACS Catal.* **2019**, *9*, 2407–2414.

(8) Lin, M.; An, B.; Niimi, N.; Jikihara, Y.; Nakayama, T.; Honma, T.; Takei, T.; Shishido, T.; Ishida, T.; Haruta, M.; Murayama, T. Role of the acid site for selective catalytic oxidation of NH_3 over Au/ Nb_2O_5 . ACS Catal. **2019**, *9*, 1753–1756.

(9) Dann, E. K.; Gibson, E. K.; Blackmore, R. H.; Catlow, C. R. A.; Collier, P.; Chutia, A.; Erden, T. E.; Hardacre, C.; Kroner, A.; Nachtegaal, M.; Raj, A.; Rogers, S. M.; Taylor, S. F. R.; Thompson, P.; Tierney, G. F.; Zeinalipour-Yazdi, C. D.; Goguet, A.; Wells, P. P. Structural selectivity of supported Pd nanoparticles for catalytic NH₃ oxidation resolved using combined operando spectroscopy. *Nat. Catal.* **2019**, *2*, 157–163.

(10) Chen, W.; Ma, Y.; Qu, Z.; Liu, Q.; Huang, W.; Hu, X.; Yan, N. Mechanism of the selective catalytic oxidation of slip ammonia over Ru-Modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy. *Environ. Sci. Technol.* **2014**, *48*, 12199–12205.

(11) Cui, X.; Zhou, J.; Ye, Z.; Chen, H.; Li, L.; Ruan, M.; Shi, J. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO₂ synthesized by co-nanocasting-replication method. *J. Catal.* **2010**, 270, 310–317.

(12) Gang, L.; Anderson, B. G.; van Grondelle, J.; van Santen, R. A.; van Gennip, W. J. H.; Niemantsverdriet, J. W.; Kooyman, P. J.; Knoester, A.; Brongersma, H. H. Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature. *J. Catal.* **2002**, 206, 60–70.

(13) Burch, R.; Southward, B. W. L. The nature of the active metal surface of catalysts for the clean combustion of biogas containing ammonia. *J. Catal.* **2001**, *198*, 286–295.

(14) Li, P.; Zhang, R.; Liu, N.; Royer, S. Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N_2 formation during NH₃ selective catalytic oxidation (NH₃-SCO). *Appl. Catal., B* **2017**, 203, 174–188.

(15) Jabłońska, M.; Palkovits, R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-Recent trends and open challenges. *Appl. Catal., B* **2016**, *181*, 332–351.

(16) Lee, S. M.; Hong, S. C. Promotional effect of vanadium on the selective catalytic oxidation of NH_3 to N_2 over Ce/V/TiO₂ catalyst. *Appl. Catal.*, B **2015**, *163*, 30–39.

(17) Chmielarz, L.; Kuśtrowski, P.; Rafalska-Łasocha, A.; Dziembaj, R. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides. *Appl. Catal., B* **2005**, *58*, 235–244.

(18) Darvell, L. I.; Heiskanen, K.; Jones, J. M.; Ross, A. B.; Simell, P.; Williams, A. An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification. *Catal. Today* **2003**, *81*, 681–692.

(19) Yang, M.; Wu, C.; Zhang, C.; He, H. Selective oxidation of ammonia over copper-silver-based catalysts. *Catal. Today* **2004**, *90*, 263–267.

(20) Zhang, T.; Chang, H.; You, Y.; Shi, C.; Li, J. Excellent activity and selectivity of one-pot synthesized Cu-SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen. *Environ. Sci. Technol.* 2018, 52, 4802–4808.

(21) Hinokuma, S.; Kiritoshi, S.; Kawabata, Y.; Araki, K.; Matsuki, S.; Sato, T.; Machida, M. Catalytic ammonia combustion properties and operando characterization of copper oxides supported on aluminum silicates and silicon oxides. *J. Catal.* **2018**, *361*, 267–277.

(22) Jabłońska, M.; Król, A.; Kukulska-Zajac, E.; Tarach, K.; Chmielarz, L.; Góra-Marek, K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen. J. Catal. 2014, 316, 36–46.

(23) Qi, G.; Gatt, J. E.; Yang, R. T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl₃. *J. Catal.* **2004**, *226*, 120–128.

(24) Long, R. Q.; Yang, R. T. Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen. *Chem. Commun.* **2000**, *17*, 1651–1652.

(25) Gang, L.; Anderson, B. G.; van Grondelle, J.; van Santen, R. A. Intermediate species and reaction pathways for the oxidation of ammonia on powdered catalysts. *J. Catal.* **2001**, *199*, 107–114.

(26) Gang, L.; Anderson, B. G.; van Grondelle, J.; van Santen, R. A. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts. *Appl. Catal., B* **2003**, *40*, 101–110.

(27) Zhang, L.; Zhang, C.; He, H. The role of silver species on Ag/ Al_2O_3 catalysts for the selective catalytic oxidation of ammonia to nitrogen. *J. Catal.* **2009**, *261*, 101–109.

(28) Zhang, L.; He, H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al₂O₃. *J. Catal.* **2009**, *268*, 18–25.

(29) Zawadzki, J. The mechanism of ammonia oxidation and certain analogous reactions. *Discuss. Faraday Soc.* **1950**, *8*, 140–152.

(30) Mieher, W. D.; Ho, W. Thermally activated oxidation of NH_3 on Pt(111) - Intermediate species and reaction mechanisms. *Surf. Sci.* **1995**, 322, 151–167.

(31) Popa, C.; van Santen, R. A.; Jansen, A. P. J. Density-functional theory study of NHx oxidation and reverse reactions on the Rh(111) surface. *J. Phys. Chem. C* **2007**, *111*, 9839–9852.

(32) Ramis, G.; Yi, L.; Busca, G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH₃. An FT-IR study. *Catal. Today* **1996**, *28*, 373–380.

(33) Amores, J. G.; Escribano, V. S.; Ramis, G.; Busca, G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. *Appl. Catal., B* **1997**, *13*, 45–58.

(34) Olofsson, G.; Hinz, A.; Andersson, A. A transient response study of the selective catalytic oxidation of ammonia to nitrogen on $Pt/CuO/Al_2O_3$. *Chem. Eng. Sci.* **2004**, *59*, 4113–4123.

(35) Burch, R.; Southward, B. W. L. Highly selective catalysts for conversion of ammonia to nitrogen in gasified biomass. *Chem. Commun.* **1999**, *16*, 1475–1476.

(36) Burch, R.; Southward, B. W. L. A novel application of trapping catalysts for the selective low-temperature oxidation of NH_3 to N_2 in simulated biogas. *J. Catal.* **2000**, *195*, 217–226.

(37) Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize effect of Al_2O_3 in Ag/Al_2O_3 catalyst for the selective catalytic oxidation of ammonia. *ACS Catal.* **2018**, *8*, 2670–2682.

(38) Wang, F.; He, G.; Zhang, B.; Chen, M.; Chen, X.; Zhang, C.; He, H. Insights into the activation effect of H_2 pretreatment on Ag/ Al₂O₃ catalyst for the selective oxidation of ammonia. *ACS Catal.* **2019**, *9*, 1437–1445.

(39) Lomachenko, K. A.; Borfecchia, E.; Negri, C.; Berlier, G.; Lamberti, C.; Beato, P.; Falsig, H.; Bordiga, S. The Cu-CHA deNOx catalyst in action: temperature-dependent NH₃-assisted selective catalytic reduction monitored by operando XAS and XES. *J. Am. Chem. Soc.* **2016**, *138*, 12025–12028.

(40) Xu, G.; Ma, J.; Wang, L.; Lv, Z.; Wang, S.; Yu, Y.; He, H. Mechanism of the H_2 effect on NH₃-selective catalytic reduction over Ag/Al₂O₃: Kinetic and diffuse reflectance infrared Fourier transform spectroscopy studies. *ACS Catal.* **2019**, *9*, 10489–10498.

(41) Xu, G.; Ma, J.; Wang, L.; Xie, W.; Liu, J.; Yu, Y.; He, H. Insight into the origin of sulfur tolerance of Ag/Al_2O_3 in the H_2 - C_3H_6 -SCR of NOx. *Appl. Catal., B* **2019**, *244*, 909–918.

(42) Xu, G.; Ma, J.; He, G.; Yu, Y.; He, H. An alumina-supported silver catalyst with high water tolerance for H_2 assisted C_3H_6 -SCR of NOx. *Appl. Catal., B* **201**7, 207, 60–71.

(43) Xu, G.; Yu, Y.; He, H. Silver valence state determines the water tolerance of Ag/Al_2O_3 for the H_2 - C_3H_6 -SCR of NOx. J. Phys. Chem. C **2018**, 122, 670–680.

(44) Seyedmonir, S.; Strohmayer, D. E.; Geoffroy, G. L.; Vannice, M. A.; Young, H. W.; Linowski, J. W. Characterization of supported silver catalysts: I. Adsorption of O₂, H₂, N₂O, and the H₂-titration of adsorbed oxygen on well-dispersed Ag on TiO₂. *J. Catal.* **1984**, *87*, 424–436.

(45) Xu, G.; Wang, H.; Yu, Y.; He, H. Role of silver species in H_2 -NH₃-SCR of NOx over Ag/Al₂O₃ catalysts: Operando spectroscopy and DFT calculations. *J. Catal.* **2021**, 395, 1–9.

(46) Shibata, J.; Shimizu, K.-i.; Takada, Y.; Shichi, A.; Yoshida, H.; Satokawa, S.; Satsuma, A.; Hattori, T. Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. *J. Catal.* **2004**, *227*, 367–374.

(47) Kim, P. S.; Kim, M. K.; Cho, B. K.; Nam, I.-S.; Oh, S. H. Effect of H_2 on deNOx performance of HC-SCR over Ag/Al₂O3: Morphological, chemical, and kinetic changes. *J. Catal.* **2013**, 301, 65–76.

(48) Kannisto, H.; Skoglundh, M.; Arve, K.; Olsson, E.; Härelind, H. Direct observation of atomically-resolved silver species on a silver alumina catalyst active for selective catalytic reduction of nitrogen oxides. *Catal. Sci. Technol.* **2019**, *9*, 6213–6216.

(49) Cant, N. W.; Little, L. H. Lewis and Brønsted acid sites on silica-alumina. *Nature* **1966**, *211*, 69–70.

(50) Hu, C.; Peng, T.; Hu, X.; Nie, Y.; Zhou, X.; Qu, J.; He, H. Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/ Al_2O_3 under Visible-Light Irradiation. J. Am. Chem. Soc. **2010**, 132, 857–862.