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Abstract
High reduction temperature generally induces the agglomeration of supported noble metals. Howerve, we found that high 
temperature reduction did not induce Pd particles sintering but improved Pd dispersion. Multiple methods were further 
carried out to illuminate the abnormal phenomenon. The results indicated more surface oxygen defects and diffusion of Pd 
particles were simultaneously induced by high temperature reduction. During diffusion process of Pd particles, they were 
trapped by the oxygen defects because of the strong metal-support interaction, which led to improvement of Pd dispersion 
on the Pd/TiO2-450R catalyst. In addition, more surface oxygen vacancies on the Pd/TiO2-450R catalyst resulted in more 
active sites of H2O activation to form abundant surface OH groups which further enhanced adsorbed O2 activation and 
mobility, and then opening a more effective pathway for HCHO oxidation, which result in its high activity of Pd/TiO2-450R 
for ambient HCHO oxidation.
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1  Introduction

Formaldehyde (HCHO), emitting from building/furnishing 
materials and decorative products, is one of the main indoor 
pollutants [1]. It is well known that HCHO is harmful to 
human health, leading to nasal tumors, headache, eye irrita-
tion, respiratory tract or even cancer [2]. With increasing 
attention paid on the pollution of HCHO, effective methods 
to remove indoor HCHO is of great importance for improv-
ing indoor air quality and reducing public health risks.

Several methods, such as adsorption [3], photo-catalysis 
[4] and catalytic oxidation [5] have been used to remove 
HCHO. In comparison, catalytic oxidation is widely rec-
ognized to be the promising method because HCHO oxi-
dation could be effectively decomposed into harmless CO2 
and H2O without any secondary pollution [6]. For decades, 
metal oxide catalysts (Ag, Mn, Co and Ni) [7–16] and sup-
ported noble metal (Pt, Au, Pd, Ir, Rh) catalysts [17–21] 
were attracting attention of researchers for HCHO oxidation. 
The former usually needed higher reaction temperature to 
completely decompose HCHO, while the later had shown 
excellent performance in HCHO oxidation at room tempera-
ture and thus was considered to be more suitable for indoor 
HCHO elimination. However, high cost of supported noble 
metal catalysts limited their wide application. Therefore, it 
is significant to lower application cost of supported noble 
metal catalysts by further improving their performance of 
HCHO oxidation.

As is well known, increasing the dispersion of supported 
noble metals is meaningful to improve the utilization of 
noble metals and increase the reaction active sites. Previ-
ously, we found that alkali metals addition could facilitate 
noble metals dispersion through strong promoter-metal inter-
actions [21–23]. Besides, we also found high temperature 
reduction did not lead in agglomeration of Pd particles but 
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did induce increasing of Pd dispersion, which was attributed 
to that TiO2−x, formed at high temperature, diffused to the 
surface of Pd particles and then trapped them [24]. Whether 
is there other potential explanation to the abnormal phe-
nomenon? It was reported that surface defects on carriers, 
such as step edges [25] or oxygen vacancies [26, 27], played 
important roles on trapping supported metals due to strong 
metal-support interactions. As we know, oxygen vacancies 
can be formed by high-temperature heating under ultra-high 
vacuum [28, 29] or reducing atmosphere [30], high-energy 
particle bombardment [31] and ion or γ-ray sputtering [32, 
33], etc. The first method was regarded as a simple and effec-
tive way to produce oxygen vacancies, besides it may simul-
taneously induce supported metals diffusion and agglomera-
tion. Thus, a conjecture that Pd particles were trapped by 
oxygen defects on TiO2 during Pd particles diffusion process 
is worthy to be explored.

In this study, electron spin resonance (ESR), Fourier 
transform infrared of CO chemisorption (CO-FTIR), temper-
ature-programmed reduction by CO (CO-TPR) and tempera-
ture-programmed desorption by O2 (O2-TPD) methods were 
further carried out to illuminate the abnormal phenomenon 
induced by high temperature reduction on Pd/TiO2 catalysts. 
Based on the results of characterizations, the effect of oxy-
gen vacancies on Pd dispersion and HCHO oxidation of Pd/
TiO2 catalysts was discussed.

2 � Experimental

2.1 � Catalyst Preparation

1 wt% Pd/TiO2 was prepared by co-impregnation of TiO2 
with aqueous Pd(NO3)2, according to our previous study [20, 
34]. Before activity testing and characterization, the samples 
were reduced with H2 at 300 °C and 450 °C for 1 h, and 
denoted as Pd/TiO2-300R and Pd/TiO2-450R respectively.

2.2 � Catalyst Characterization

X-band electron paramagnetic resonance (EPR) spectra 
were recorded at room temperature using a Bruker A300-
10/12EPR spectrometer.

For Fourier transform infrared of CO chemisorption (CO-
FTIR), the samples were first pre-reduced with H2 at 300 °C 
or 450 °C for 1 h, followed by purging with He for 30 min 
to desorb H2. Then the system was outgassed at 300 °C until 
P = 10–3 torr for 30 min. Finally, the system was cooled down 
to the room temperature before introduction of CO (5% CO/
He, P = 50 Torr) and IR measurements.

Temperature-programmed reduction by CO (CO-TPR) 
was conducted in a Micromeritics AutoChem II 2920 appa-
ratus equipped with Mass detector. The samples were first 

pre-reduced with H2 at 300 °C or 450 °C for 1 h, followed 
by purging with He for 30 min to desorb H2. Then, the sys-
tem was cooled down to 25 °C and the gas was switched to 
5%O2 and 1% H2O for 30 min followed by He purging for 
30 min. Finally, the gas was switched to 5%CO/He and the 
system was heated at a rate of 10 °C min−1. Temperature-
programmed desorption by O2 (O2-TPD) was conducted 
according to our previous work [34].

2.3 � Catalyst Activity Testing

Catalyst activity testing for HCHO oxidation was performed 
according to our previous work [18]. For kinetics measure-
ment, the feed gas composition was 300 ppm HCHO at a 
gas hourly space velocity of 300,000 h−1. The reactor was 
operated in a differential mode, keeping the HCHO conver-
sion below 20%. As a probe reaction, the activity tests for 
CO oxidation with or without water over Pd/TiO2 catalysts 
(~ 15 mg) was performed in a fixed-bed quartz flow reactor. 
The feed gas flow is 100 ml min−1 containing 1% CO, 20% 
O2 and 4% H2O balanced by N2. The CO and CO2 were 
monitored by Shangfen GC-112A equipped with a TDX-
01 column and hydrogen flame ionization detector (FID). 
Before activity testing, the catalysts were pre-reduced 
with H2 flow at 300 or 450 °C for 1 h, followed by He flow 
purge at 300 °C for 30 min and then cooled down to room 
temperature.

3 � Results and Discussion

3.1 � Surface Oxygen Defects

The EPR technique was employed to characterize the defect 
structures of TiO2 and Pd/TiO2 catalysts and the result was 
shown in Fig. 1. There was no signal on the pure TiO2, while 
an obvious signal at g = 2.005, which assigned to oxygen 
vacancies, appeared on Pd/TiO2-300R and Pd/TiO2-450R 
catalysts [35]. In comparison, the signal intensity became 
stronger after high temperature reduction, which indicated 
that there were more oxygen vacancies on Pd/TiO2-450R 
catalyst than that on Pd/TiO2-300R catalyst. It is well known 
that oxygen vacancies on TiO2 are the important active sites 
of water dissociation to form surface hydroxyl groups [36, 
37] which play essential roles in HCHO oxidation.

Structure properties of all samples were further exam-
ined by measuring Raman scattering. As shown in Fig. 2, 
Raman active modes locating at ~ 150 cm−1 (Eg), ~ 400 cm−1 
(B1g), ~ 520 cm−1 (B1g) and ~ 640 cm−1 (Eg) were found on 
all samples and should be attributed to anatase phase [38]. 
Compared with TiO2-300R, the main Eg mode of TiO2-450R 
(locating at 147) became broaden after high temperature 
reduction. After Pd loading, the lowest frequency of Eg 
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mode shifted to 151 and 153 cm−1 on Pd/TiO2-300R and 
Pd/TiO2-450R, respectively. The broadening and blue shift 
of Eg mode could be ascribed to the formation of oxygen 
vacancies on the samples surface during reduction, which 
was in line with the result of EPR.

3.2 � Strong Metal‑Support Interaction

As is well known that the SMSI usually results in the sup-
pression of adsorption of small molecules such as CO and 
H2 along with the electron transfer between metal and sup-
port [39–41]. CO-FTIR was next carried out to elucidate 
the SMSI on the Pd/TiO2-300R and Pd/TiO2-450R catalysts 
and the result was shown in Fig. 3. Three carbonyl bands 

of coordinated CO were detected on the reduced Pd/TiO2 
catalysts. The band at 2022–2160 cm−1 is assigned to the 
linear adsorbed CO on Pd, and the other band located at 
1800–2022 cm−1 is assigned to the bridge bonded CO on Pd 
[42]. Compared to the Pd/TiO2-300R catalyst, the intensity 
of adsorbed CO on the Pd/TiO2-450R catalyst decreased, 
which can be attributed to the SMSI formed during high 
temperature reduction [39, 40, 43]. Meanwhile, the band 
shift of the linear CO stretching to lower wavenumber was 
also observed on the Pd/TiO2-450R catalyst, which can be 
attributed to the increase of electronic density in the d sub-
shell of Pd [41]. The phenomenon can also be demonstrated 
by the results of Pd 3d XPS in our previous work [24].

Combined with the result of EPR, the improvement of 
Pd dispersion on Pd/TiO2-450R catalyst could be ascribed 
to that high temperature reduction simultaneously induced 
oxygen defects on TiO2 surface and Pd particles diffusion 
to agglomeration. The Pd particles were trapped by oxygen 
defects during their diffusion process [26, 27].

3.3 � Surface Oxygen Species

Furthermore, CO oxidation as a probe reaction was carried 
out to further verify the promotion effect of H2O on the 
Pd/TiO2-300R and Pd/TiO2-450R catalysts and the result is 
shown in Fig. 4. When H2O was absent in the system, the 
temperatures of 10%, 50% and 100% CO conversion for the 
Pd/TiO2-300R catalyst were 38, 60 and 110 °C respectively, 
while they were 51, 85 and 155 °C for the Pd/TiO2-450R 
catalyst. Based on the result, it is obvious that the Pd/TiO2-
300R catalyst possessed higher activity for CO oxidation 
than the Pd/TiO2-450R catalyst, which may due to that, as is 
mentioned before, the CO adsorption weakened by SMSI on 

Fig. 1   EPR spectra on TiO2, Pd/TiO2-300R and Pd/TiO2-450R sam-
ples

Fig. 2   Raman spectra of TiO2 and Pd/TiO2 samples

Fig. 3   IR spectra of CO (50 Torr) absorbed on Pd/TiO2-300R and Pd/
TiO2-450R samples
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the Pd/TiO2-450R catalyst was unfavorable for CO oxidation 
[44]. In comparison, when 4% H2O was added in the sys-
tem, the temperature of 10%, 50% and 100% CO conversion 
were improved to 28, 60 and 106 °C for the Pd/TiO2-300R 
catalyst and to 27, 53 and 71 °C for the Pd/TiO2-450R cata-
lyst. It is clear that the performance of Pd/TiO2-300R and 
Pd/TiO2-450R catalysts for CO oxidation was significantly 
improved. However, contrary to the above result, the Pd/
TiO2-450R catalyst showed a higher activity than Pd/TiO2-
300R catalyst for CO oxidation. According to the previous 
work, it is believed that surface OH groups formed by water 
dissociation on oxygen vacancies [45] or on metal surfaces 
through water-oxygen interaction [46–48] have a promotion 
effect on the supported Pt or Au catalysts for CO oxidation. 
Therefore, combined with the above results, it is reasonable 
to conclude that Pd/TiO2-450R catalyst has a better ability 
of H2O or H2O/O2 activation and possesses more surface 
active OH groups.

We also performed CO-TPR (2CO + 2OH → 2CO2 + H2) 
to determine whether activation of the surface OH species 
was enhanced on the Pd/TiO2-450R catalyst. As shown in 
Fig. 5, more H2 and CO2 were generated on the Pd/TiO2-
450R catalyst than on the Pd/TiO2-300R catalyst, indicating 
that more active OH groups existed on the Pd/TiO2-450R 
catalyst to react with CO to produce CO2 and H2. We previ-
ously have shown that surface OH groups play an important 
role in ambient HCHO oxidation since OH reaction with 
formate species to final products is a facile pathway for 
HCHO oxidation [24]. Therefore, the enhancement of the 
surface OH concentration by high temperature reduction is 
one of the main reasons for the improved performance of 
Pd/TiO2-450R for HCHO oxidation. Furthermore, the OH 
species could facilitate O2 adsorption and activation on TiO2 

(110) [49, 50] and enhance the diffusion of oxygen along the 
surface Ti (5c) to the metal-support interface where always 
be recognized as the active sites [50, 51].

O2-TPD experiments were next performed to inves-
tigate the O2 activation over the Pd/TiO2-300R and Pd/
TiO2-450R catalysts and the profiles are shown in Fig. 6. 
There was only one broad O2 desorption peak on both Pd/
TiO2-300R and Pd/TiO2-450R catalysts in the temperature 
range of 25–400 °C. For Pd/TiO2-300R catalyst, the O2 
desorption occurred at about 140 °C and the peak was 
centered at 230 °C. With higher temperature reduction, the 
O2 desorption peak shifted to low temperature range, start-
ing at about 80 °C and centering at 200 °C, indicating that 
mobility and activation of the chemisorbed oxygen were 
indeed enhanced on Pd/TiO2-450R catalyst, which may 

Fig. 4   The activity of CO oxidation on Pd/TiO2-300R and Pd/TiO2-
450R catalysts. Reaction condition: 1% CO, 20% O2, 4% H2O bal-
anced by N2, GHSV = 40,000 mL g−1 h
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Fig. 5   CO-TPR profiles of Pd/TiO2-300R and Pd/TiO2-450R samples

Fig. 6   O2-TPD on Pd/TiO2-300R and Pd/TiO2-450R catalysts
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contribute to its excellent performance of HCHO oxidation 
at room temperature.

3.4 � Kinetics Test

To further check for the HCHO oxidation pathway, we car-
ried out kinetics tests on the Pd/TiO2 catalysts. Arrhenius-
type plots for the rates of HCHO oxidation on the Pd/TiO2-
300R and Pd/TiO2-450R catalysts are shown in Fig. 7. 
The apparent activation energy of the reaction on the Pd/
TiO2-300R catalyst is 153 kJ mol−1, while it was lowered 
to about 50 kJ mol−1 on the Pd/TiO2-450R catalyst. That 
is, the reaction was easier to activate on the Pd/TiO2-450R 
catalyst, which is in line with the result of HCHO-TPD in 
our previous work [24].

3.5 � Performance of HCHO Oxidation

The catalytic performance of the Pd/TiO2-300R and Pd/
TiO2-450R catalyst was also checked by long isothermal 
tests under the same condition at 25 °C and the result was 
shown in Fig. 8. At the beginning of testing, both of the 
Pd/TiO2 catalysts showed complete HCHO conversion. 
However, the HCHO conversion dropped slightly and was 
finally stable at 10% after 4 h, which may be attributed to 
that the consumed surface hydroxyl groups could not be 
effectively recovered on the Pd/TiO2-300R catalyst due to 
its limited activation ability of H2O. In comparison, the 
Pd/TiO2-450R catalyst kept an obvious HCHO conversion 
for 13 h because of its excellent H2O and O2 activation 
ability.

4 � Conclusions

It is found that high temperature reduction had a promo-
tion effect on the Pd/TiO2 for HCHO oxidation at room 
temperature. High temperature reduction induced surface 
oxygen defects and diffusion of Pd particles. Because 
of the strong metal-support interaction, the diffused Pd 
particles were trapped by the oxygen defects, which led 
to improvement of Pd dispersion on the Pd/TiO2-450R 
catalyst. In addition, more surface oxygen vacancies on 
the Pd/TiO2-450R catalyst resulted in more active sites 
of H2O activation to form abundant surface OH groups 
which further enhanced adsorbed O2 activation and mobil-
ity. In addition, lower apparent activation energy of HCHO 
oxidation on the Pd/TiO2-450R catalyst made it to follow 
a more efficient reaction pathway of HCHO oxidation. 
Hence, the Pd/TiO2-450R catalyst demonstrates a much 
higher activity than Pd/TiO2-300R for HCHO oxidation 
at room temperature.
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